test_launch_coverage.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import sys
import subprocess
import os
import time
import six
import copy
import unittest
import paddle.fluid as fluid

from argparse import ArgumentParser, REMAINDER
from paddle.distributed.utils import _print_arguments, get_gpus, get_cluster_from_args


def _parse_args():
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.	
NOTE: your train program ***must*** run as distributed nccl2 mode,	
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-	
And your train program must read environment variables below in order to let different	
process init properly:	
FLAGS_selected_gpus	
PADDLE_TRAINER_ID	
PADDLE_CURRENT_ENDPOINT	
PADDLE_TRAINERS_NUM	
PADDLE_TRAINER_ENDPOINTS	
POD_IP (current node ip address, not needed for local training)	
''')

    #Optional arguments for the launch helper	
    parser.add_argument(
        "--cluster_node_ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
    parser.add_argument(
        "--node_ip",
        type=str,
        default="127.0.0.1",
        help="The current node ip. ")
    parser.add_argument(
        "--use_paddlecloud",
        action='store_true',
        help="wheter to use paddlecloud platform to run your multi-process job. If false, no need to set this argument."
    )
    parser.add_argument(
        "--started_port",
        type=int,
        default=None,
        help="The trainer's started port on a single node")

    parser.add_argument(
        "--print_config",
        type=bool,
        default=True,
        help="Print the config or not")

    parser.add_argument(
        "--selected_gpus",
        type=str,
        default=None,
        help="It's for gpu training and the training process will run on the selected_gpus,"
        "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
    )

    parser.add_argument(
        "--log_level",
        type=int,
        default=20,  # logging.INFO, details are here:https://docs.python.org/3/library/logging.html#levels	
        help="Logging level, default is logging.INFO")

    parser.add_argument(
        "--log_dir",
        type=str,
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

    #positional	
    parser.add_argument(
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

    #rest from the training program	
    parser.add_argument('training_script_args', nargs=REMAINDER)
    return parser.parse_args()


class TestCoverage(unittest.TestCase):
    def test_gpus(self):
        args = _parse_args()

        if args.print_config:
            _print_arguments(args)

        gpus = get_gpus(None)

        args.use_paddlecloud = True
        cluster, pod = get_cluster_from_args(args, "0")


if __name__ == '__main__':
    unittest.main()