bincount_kernel.cc 4.0 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/bincount_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename Context, typename T, typename InputT>
void BincountInner(const Context& dev_ctx,
                   const DenseTensor& x,
26
                   const paddle::optional<DenseTensor>& weights,
0
0x45f 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                   int minlength,
                   DenseTensor* out) {
  const DenseTensor* input = &x;
  DenseTensor* output = out;
  const InputT* input_data = input->data<InputT>();

  auto input_numel = input->numel();

  if (input_data == nullptr) {
    phi::DDim out_dim{0};
    output->Resize(out_dim);
    dev_ctx.template Alloc<InputT>(output);
    return;
  }

  PADDLE_ENFORCE_GE(
      *std::min_element(input_data, input_data + input_numel),
      static_cast<InputT>(0),
      phi::errors::InvalidArgument(
          "The elements in input tensor must be non-negative ints"));

  int64_t output_size = static_cast<int64_t>(*std::max_element(
                            input_data, input_data + input_numel)) +
                        1L;
  output_size = std::max(output_size, static_cast<int64_t>(minlength));

  phi::DDim out_dim{output_size};
  output->Resize(out_dim);

  bool has_weights = weights.is_initialized();

  if (has_weights) {
    const T* weights_data = weights->data<T>();
    if (weights->dtype() == DataType::FLOAT32) {
      float* output_data = dev_ctx.template Alloc<float>(output);
      phi::funcs::SetConstant<Context, float>()(
          dev_ctx, output, static_cast<float>(0));
      for (int64_t i = 0; i < input_numel; i++) {
        output_data[input_data[i]] += static_cast<float>(weights_data[i]);
      }
    } else {
      double* output_data = dev_ctx.template Alloc<double>(output);
      phi::funcs::SetConstant<Context, double>()(
          dev_ctx, output, static_cast<double>(0));
      for (int64_t i = 0; i < input_numel; i++) {
        output_data[input_data[i]] += static_cast<double>(weights_data[i]);
      }
    }

  } else {
    int64_t* output_data = dev_ctx.template Alloc<int64_t>(output);
    phi::funcs::SetConstant<Context, int64_t>()(dev_ctx, output, 0L);
    for (int64_t i = 0; i < input_numel; i++) {
      output_data[input_data[i]] += 1L;
    }
  }
}

template <typename T, typename Context>
void BincountKernel(const Context& dev_ctx,
                    const DenseTensor& x,
88
                    const paddle::optional<DenseTensor>& weights,
89
                    const Scalar& minlength,
0
0x45f 已提交
90
                    DenseTensor* out) {
91 92 93 94 95 96 97 98
  int int_minlength = minlength.to<int>();
  PADDLE_ENFORCE_GE(int_minlength,
                    0,
                    phi::errors::InvalidArgument(
                        "The minlength should be greater than or equal to 0."
                        "But received minlength is %d",
                        int_minlength));

0
0x45f 已提交
99
  if (x.dtype() == DataType::INT32) {
100
    BincountInner<Context, T, int>(dev_ctx, x, weights, int_minlength, out);
0
0x45f 已提交
101
  } else if (x.dtype() == DataType::INT64) {
102
    BincountInner<Context, T, int64_t>(dev_ctx, x, weights, int_minlength, out);
0
0x45f 已提交
103 104 105 106 107 108 109 110 111 112 113 114
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(bincount,
                   CPU,
                   ALL_LAYOUT,
                   phi::BincountKernel,
                   float,
                   double,
                   int,
                   int64_t) {}