ops.py 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
from .layer_function_generator import (
    generate_layer_fn,
    generate_activation_fn,
    generate_inplace_fn,
    add_sample_code,
)
21 22 23 24
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.framework import in_dygraph_mode, _in_legacy_dygraph
from ..framework import LayerHelper
from .. import _C_ops, _legacy_C_ops
25 26 27

__deprecated_func_name__ = {
    'tanh_shrink': 'tanhshrink',
28
    'logsigmoid': 'log_sigmoid',
29 30 31 32 33 34 35 36 37 38 39
}

__activations_noattr__ = [
    'silu',
    'logsigmoid',
    'tanh_shrink',
    'softplus',
    'softsign',
    'tanh',
]

40
__unary_func__ = ['abs']
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

__inplace_unary_func__ = [
    'exp_',
    'sqrt_',
    'rsqrt_',
    'ceil_',
    'floor_',
    'round_',
    'reciprocal_',
]

__all__ = []

# It is a hot fix in some unittest using:
#   fluid.layers.scale(x=x, scale=10.0, out=out_var)
# e.g.: test_program_code.py, test_dist_train.py
globals()['_scale'] = generate_layer_fn('scale')

globals()['_elementwise_div'] = generate_layer_fn('elementwise_div')

for _OP in set(__activations_noattr__):
    _new_OP = _OP
    if _OP in __deprecated_func_name__:
        _new_OP = __deprecated_func_name__[_OP]
    _func = generate_activation_fn(_OP)
    globals()[_OP] = _func

for _OP in set(__unary_func__):
    _new_OP = _OP
    if _OP in __deprecated_func_name__:
        _new_OP = __deprecated_func_name__[_OP]
    _func = generate_activation_fn(_OP)
    globals()[_OP] = _func

for _OP in set(__inplace_unary_func__):
    _new_OP = _OP
    if _OP in __deprecated_func_name__:
        _new_OP = __deprecated_func_name__[_OP]
    _func = generate_inplace_fn(_OP)
    globals()[_OP] = _func

82
add_sample_code(
83 84
    globals()["silu"],
    r"""
85 86 87 88 89 90 91 92
Examples:
    .. code-block:: python
        import paddle
        import paddle.nn.functional as F
        x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
        out = F.silu(x)
        print(out)
        # [ 0.7310586 1.7615942 2.8577224, 3.9280552 ]
93 94
""",
)
95

96
add_sample_code(
97 98
    globals()["logsigmoid"],
    r"""
99 100 101 102 103 104 105 106
Examples:
    .. code-block:: python
        import paddle
        import paddle.nn.functional as F
        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
        out = F.log_sigmoid(x)
        print(out)
        # [-0.91301525 -0.79813887 -0.64439666 -0.55435524]
107 108
""",
)
109

110
add_sample_code(
111 112
    globals()["tanh"],
    r"""
113 114 115 116 117 118 119 120 121 122
Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
        out = paddle.tanh(x)
        print(out)
        # [-0.37994896 -0.19737532  0.09966799  0.29131261]

123 124
""",
)
125

126
add_sample_code(
127 128
    globals()["tanh_shrink"],
    r"""
129 130 131 132 133 134 135
Examples:
    .. code-block:: python

        import paddle
        import paddle.nn.functional as F

        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
136
        out = F.tanhshrink(x)
137 138 139
        print(out)
        # [-0.020051, -0.00262468, 0.000332005, 0.00868739]

140 141
""",
)
142

143
add_sample_code(
144 145
    globals()["abs"],
    r"""
146 147 148 149 150 151 152 153 154 155
Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
        out = paddle.abs(x)
        print(out)
        # [0.4 0.2 0.1 0.3]

156 157
""",
)
158

159
add_sample_code(
160
    globals()["softplus"],
161
    r"""
162 163 164 165
Examples:
    .. code-block:: python

        import paddle
166
        import paddle.nn.functional as F
167 168

        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
169
        out = F.softplus(x)
170
        print(out)
171
        # [0.513015, 0.598139, 0.744397, 0.854355]
172

173 174
""",
)
175

176
add_sample_code(
177
    globals()["softsign"],
178
    r"""
179 180 181 182
Examples:
    .. code-block:: python

        import paddle
183
        import paddle.nn.functional as F
184 185

        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
186
        out = F.softsign(x)
187
        print(out)
188
        # [-0.285714, -0.166667, 0.0909091, 0.230769]
189

190 191
""",
)
192 193


194 195 196
def acos(x, name=None):
    """
    Acos Activation Operator.
197

198 199
    .. math::
        out = cos^{-1}(x)
200

201 202 203
    Args:
        x (Tensor): Input of Acos operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
204

205 206
    Returns:
        Tensor. Output of Acos operator, a Tensor with shape same as input.
207

208 209
    Examples:
        .. code-block:: python
210

211
            import paddle
212

213 214 215 216
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.acos(x)
            print(out)
            # [1.98231317 1.77215425 1.47062891 1.26610367]
217

218 219 220 221 222
    """
    if in_dygraph_mode():
        return _C_ops.acos(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.acos(x)
223

224 225 226 227 228
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acos')
    helper = LayerHelper('acos', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='acos', inputs={"X": x}, outputs={"Out": out})
    return out
229 230


231 232 233
def acosh(x, name=None):
    """
    Acosh Activation Operator.
234

235 236
    .. math::
       out = acosh(x)
237

238 239 240
    Args:
        x (Tensor): Input of Acosh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
241

242 243
    Returns:
        Tensor. Output of Acosh operator, a Tensor with shape same as input.
244

245 246
    Examples:
        .. code-block:: python
247

248
            import paddle
249

250 251 252 253
            x = paddle.to_tensor([1., 3., 4., 5.])
            out = paddle.acosh(x)
            print(out)
            # [0.        , 1.76274729, 2.06343699, 2.29243159]
254

255 256 257 258 259
    """
    if in_dygraph_mode():
        return _C_ops.acosh(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.acosh(x)
260

261 262 263 264 265
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'acosh')
    helper = LayerHelper('acosh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='acosh', inputs={"X": x}, outputs={"Out": out})
    return out
266 267


268 269 270
def asin(x, name=None):
    """
    Arcsine Operator.
271

272 273
    .. math::
       out = sin^{-1}(x)
274

275 276 277
    Args:
        x (Tensor): Input of Asin operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
278

279 280
    Returns:
        Tensor. Same shape and dtype as input.
281

282 283
    Examples:
        .. code-block:: python
284

285
            import paddle
286

287 288 289 290
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.asin(x)
            print(out)
            # [-0.41151685 -0.20135792  0.10016742  0.30469265]
291

292 293 294 295 296
    """
    if in_dygraph_mode():
        return _C_ops.asin(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.asin(x)
297

298 299 300 301 302
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asin')
    helper = LayerHelper('asin', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='asin', inputs={"X": x}, outputs={"Out": out})
    return out
303 304


305 306 307
def asinh(x, name=None):
    """
    Asinh Activation Operator.
308

309 310
    .. math::
       out = asinh(x)
311

312 313 314
    Args:
        x (Tensor): Input of Asinh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
315

316 317
    Returns:
        Tensor. Output of Asinh operator, a Tensor with shape same as input.
318

319 320
    Examples:
        .. code-block:: python
321

322
            import paddle
323

324 325 326 327
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.asinh(x)
            print(out)
            # [-0.39003533, -0.19869010,  0.09983408,  0.29567307]
328

329 330 331 332 333
    """
    if in_dygraph_mode():
        return _C_ops.asinh(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.asinh(x)
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'asinh')
    helper = LayerHelper('asinh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='asinh', inputs={"X": x}, outputs={"Out": out})
    return out


def atan(x, name=None):
    """
    Arctangent Operator.

    .. math::
       out = tan^{-1}(x)

    Args:
        x (Tensor): Input of Atan operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Same shape and dtype as input x.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.atan(x)
            print(out)
            # [-0.38050638 -0.19739556  0.09966865  0.29145679]

    """
    if in_dygraph_mode():
        return _C_ops.atan(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.atan(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atan')
    helper = LayerHelper('atan', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='atan', inputs={"X": x}, outputs={"Out": out})
    return out


def atanh(x, name=None):
    """
    Atanh Activation Operator.

    .. math::
       out = atanh(x)

    Args:
        x (Tensor): Input of Atan operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Atanh operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.atanh(x)
            print(out)
            # [-0.42364895, -0.20273256,  0.10033535,  0.30951962]

    """
    if in_dygraph_mode():
        return _C_ops.atanh(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.atanh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'atanh')
    helper = LayerHelper('atanh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='atanh', inputs={"X": x}, outputs={"Out": out})
    return out


416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def ceil(x, name=None):
    """

    Ceil Operator. Computes ceil of x element-wise.

    .. math::
        out = \\left \\lceil x \\right \\rceil

    Args:
        x (Tensor): Input of Ceil operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Ceil operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.ceil(x)
            print(out)
            # [-0. -0.  1.  1.]

    """
    if in_dygraph_mode():
        return _C_ops.ceil(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.ceil(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'ceil')
    helper = LayerHelper('ceil', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='ceil', inputs={"X": x}, outputs={"Out": out})
    return out


454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def cos(x, name=None):
    """
    Cosine Operator. Computes cosine of x element-wise.

    Input range is `(-inf, inf)` and output range is `[-1,1]`.

    .. math::
       out = cos(x)

    Args:
        x (Tensor): Input of Cos operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Cos operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.cos(x)
            print(out)
            # [0.92106099 0.98006658 0.99500417 0.95533649]

    """
    if in_dygraph_mode():
        return _C_ops.cos(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.cos(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cos')
    helper = LayerHelper('cos', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='cos', inputs={"X": x}, outputs={"Out": out})
    return out


def cosh(x, name=None):
    """
    Cosh Activation Operator.

    Input range `(-inf, inf)`, output range `(1, inf)`.

499 500
    .. math::
       out = \\frac{exp(x)+exp(-x)}{2}
501

502 503 504
    Args:
        x (Tensor): Input of Cosh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
505

506 507
    Returns:
        Tensor. Output of Cosh operator, a Tensor with shape same as input.
508

509 510
    Examples:
        .. code-block:: python
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.cosh(x)
            print(out)
            # [1.08107237 1.02006676 1.00500417 1.04533851]

    """
    if in_dygraph_mode():
        return _C_ops.cosh(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.cosh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'cosh')
    helper = LayerHelper('cosh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='cosh', inputs={"X": x}, outputs={"Out": out})
    return out
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

def exp(x, name=None):
    """

    Computes exp of x element-wise with a natural number `e` as the base.

    .. math::
        out = e^x

    Args:
        x (Tensor): Input of Exp operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Exp operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.exp(x)
            print(out)
            # [0.67032005 0.81873075 1.10517092 1.34985881]

    """
    if in_dygraph_mode():
        return _C_ops.exp(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.exp(x)

    check_variable_and_dtype(
        x,
        'x',
        [
            'int32',
            'int64',
            'float16',
            'float32',
            'float64',
            'complex64',
            'complex128',
        ],
        'exp',
    )
    helper = LayerHelper('exp', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='exp', inputs={"X": x}, outputs={"Out": out})
    return out


583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
def expm1(x, name=None):
    """

    Expm1 Operator. Computes expm1 of x element-wise with a natural number :math:`e` as the base.

    .. math::
        out = e^x - 1

    Args:
        x (Tensor): Input of Expm1 operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Expm1 operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.expm1(x)
            print(out)
            # [-0.32967997, -0.18126924,  0.10517092,  0.34985882]

    """
    if in_dygraph_mode():
        return _C_ops.expm1(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.expm1(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'expm1')
    helper = LayerHelper('expm1', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='expm1', inputs={"X": x}, outputs={"Out": out})
    return out


def floor(x, name=None):
    """

    Floor Activation Operator. Computes floor of x element-wise.

    .. math::
        out = \\lfloor x \\rfloor

    Args:
        x (Tensor): Input of Floor operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Floor operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.floor(x)
            print(out)
            # [-1. -1.  0.  0.]

    """
    if in_dygraph_mode():
        return _C_ops.floor(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.floor(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'floor')
    helper = LayerHelper('floor', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='floor', inputs={"X": x}, outputs={"Out": out})
    return out


def reciprocal(x, name=None):
    """

    Reciprocal Activation Operator.

    .. math::
        out = \\frac{1}{x}

    Args:
        x (Tensor): Input of Reciprocal operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Reciprocal operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.reciprocal(x)
            print(out)
            # [-2.5        -5.         10.          3.33333333]

    """
    if in_dygraph_mode():
        return _C_ops.reciprocal(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.reciprocal(x)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'reciprocal'
    )
    helper = LayerHelper('reciprocal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='reciprocal', inputs={"X": x}, outputs={"Out": out})
    return out


def round(x, name=None):
    """

    Round the values in the input to the nearest integer value.

    .. code-block:: text

        input:
          x.shape = [4]
          x.data = [1.2, -0.9, 3.4, 0.9]

        output:
          out.shape = [4]
          out.data = [1., -1., 3., 1.]

    Args:
        x (Tensor): Input of Round operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Round operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5])
            out = paddle.round(x)
            print(out)
            # [-1. -0.  1.  2.]

    """
    if in_dygraph_mode():
        return _C_ops.round(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.round(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'round')
    helper = LayerHelper('round', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='round', inputs={"X": x}, outputs={"Out": out})
    return out


744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
def rsqrt(x, name=None):
    """
    Rsqrt Activation Operator.

    Please make sure input is legal in case of numeric errors.

    .. math::
       out = \\frac{1}{\\sqrt{x}}

    Args:
        x (Tensor): Input of Rsqrt operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Rsqrt operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4])
            out = paddle.rsqrt(x)
            print(out)
            # [3.16227766 2.23606798 1.82574186 1.58113883]

    """
    if in_dygraph_mode():
        return _C_ops.rsqrt(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.rsqrt(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'rsqrt')
    helper = LayerHelper('rsqrt', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='rsqrt', inputs={"X": x}, outputs={"Out": out})
    return out


def sigmoid(x, name=None):
    """
    Sigmoid Activation.

    .. math::
       out = \\frac{1}{1 + e^{-x}}

    Args:
        x (Tensor): Input of Sigmoid operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Sigmoid operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = F.sigmoid(x)
            print(out)
            # [0.40131234 0.450166   0.52497919 0.57444252]

    """
    if in_dygraph_mode():
        return _C_ops.sigmoid(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.sigmoid(x)

    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'sigmoid'
    )
    helper = LayerHelper('sigmoid', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='sigmoid', inputs={"X": x}, outputs={"Out": out})
    return out


823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
def sin(x, name=None):
    """
    Sine Activation Operator.

    .. math::
       out = sin(x)

    Args:
        x (Tensor): Input of Sin operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Sin operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.sin(x)
            print(out)
            # [-0.38941834 -0.19866933  0.09983342  0.29552021]

    """
    if in_dygraph_mode():
        return _C_ops.sin(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.sin(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sin')
    helper = LayerHelper('sin', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='sin', inputs={"X": x}, outputs={"Out": out})
    return out


def sinh(x, name=None):
    """
    Sinh Activation Operator.

    .. math::
       out = sinh(x)

    Args:
        x (Tensor): Input of Sinh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Sinh operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.sinh(x)
            print(out)
            # [-0.41075233 -0.201336    0.10016675  0.30452029]

    """
    if in_dygraph_mode():
        return _C_ops.sinh(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.sinh(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sinh')
    helper = LayerHelper('sinh', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='sinh', inputs={"X": x}, outputs={"Out": out})
    return out


897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
def sqrt(x, name=None):
    """
    Sqrt Activation Operator.

    .. math::
       out=\\sqrt{x}=x^{1/2}

    Args:
        x (Tensor): Input of Sqrt operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Sqrt operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4])
            out = paddle.sqrt(x)
            print(out)
            # [0.31622777 0.4472136  0.54772256 0.63245553]
    """
    if in_dygraph_mode():
        return _C_ops.sqrt(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.sqrt(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sqrt')
    helper = LayerHelper('sqrt', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='sqrt', inputs={"X": x}, outputs={"Out": out})
    return out


def square(x, name=None):
    """
    Square each elements of the inputs.

    .. math::
       out = x^2

    Args:
        x (Tensor): Input of Square operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Square operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.square(x)
            print(out)
            # [0.16 0.04 0.01 0.09]
    """
    if in_dygraph_mode():
        return _C_ops.square(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.square(x)

    check_variable_and_dtype(
        x,
        'x',
        [
            'int32',
            'int64',
            'float16',
            'float32',
            'float64',
            'complex64',
            'complex128',
        ],
        'square',
    )
    helper = LayerHelper('square', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='square', inputs={"X": x}, outputs={"Out": out})
    return out


982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
def tan(x, name=None):
    """
    Tangent Operator. Computes tangent of x element-wise.

    Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

    .. math::
       out = tan(x)

    Args:
        x (Tensor): Input of Tan operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. Output of Tan operator, a Tensor with shape same as input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.tan(x)
            print(out)
            # [-0.42279324, -0.20271005, 0.10033467, 0.30933627]

    """
    if in_dygraph_mode():
        return _C_ops.tan(x)
    if _in_legacy_dygraph():
        return _legacy_C_ops.tan(x)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tan')
    helper = LayerHelper('tan', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='tan', inputs={"X": x}, outputs={"Out": out})
    return out


1021 1022 1023 1024
_erf_ = generate_layer_fn('erf')


def erf(x, name=None):
1025
    if in_dygraph_mode():
1026
        return _C_ops.erf(x)
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    return _erf_(**kwargs)


erf.__doc__ = r"""
:strong:`Erf Operator`
1038
For more details, see `Error function <https://en.wikipedia.org/wiki/Error_function>`_.
1039 1040 1041

Equation:
    ..  math::
1042
        out = \frac{2}{\sqrt{\pi}} \int_{0}^{x}e^{- \eta^{2}}d\eta
1043 1044 1045 1046

Args:

    x (Tensor): The input tensor, it's data type should be float32, float64.
1047
    name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1048 1049 1050

Returns:

1051
    Tensor: The output of Erf, dtype: float32 or float64, the same as the input, shape: the same as the input.
1052 1053

Examples:
1054

1055
    .. code-block:: python
1056

1057
        import paddle
1058

1059 1060 1061 1062 1063
        x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
        out = paddle.erf(x)
        print(out)
        # [-0.42839236 -0.22270259  0.11246292  0.32862676]
"""