matmul_kernel.cc 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/matmul_kernel.h"
W
Weilong Wu 已提交
16
#include "paddle/fluid/framework/tensor_util.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/xpu/xpu_api_wrapper.h"

namespace phi {

template <typename T, typename Context>
void MatmulKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  bool transpose_x,
                  bool transpose_y,
                  DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  dev_ctx.template Alloc<T>(out);
  const XPUType* x_ptr = reinterpret_cast<const XPUType*>(x.data<T>());
  const XPUType* y_ptr = reinterpret_cast<const XPUType*>(y.data<T>());
  XPUType* out_ptr = reinterpret_cast<XPUType*>(out->data<T>());
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  XpuFcInfo fc_info;
  GetFCInfo(x_dims, y_dims, transpose_x, transpose_y, &fc_info);
  xpu::Context* xpu_ctx = dev_ctx.x_context();
  MatMulXPUFunction<XPUType>(xpu_ctx, x_ptr, y_ptr, out_ptr, fc_info, 1.0f);
}

W
Weilong Wu 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
template <typename T, typename Context>
void MatmulWithFlattenKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int x_num_col_dims,
                             int y_num_col_dims,
                             DenseTensor* out) {
  using XPUType = typename XPUTypeTrait<T>::Type;
  const DenseTensor x_matrix =
      x.dims().size() > 2
          ? paddle::framework::ReshapeToMatrix(x, x_num_col_dims)
          : x;
  const DenseTensor y_matrix =
      y.dims().size() > 2
          ? paddle::framework::ReshapeToMatrix(y, y_num_col_dims)
          : y;
  dev_ctx.template Alloc<T>(out);

  const XPUType* x_ptr = reinterpret_cast<const XPUType*>(x_matrix.data<T>());
  const XPUType* y_ptr = reinterpret_cast<const XPUType*>(y_matrix.data<T>());
  XPUType* out_ptr = reinterpret_cast<XPUType*>(out->data<T>());

  bool trans_a = false;
  bool trans_b = false;
  auto x_dims = x_matrix.dims();
  auto y_dims = y_matrix.dims();

  phi::XpuFcInfo fc_info;
  phi::GetFCInfo(x_dims, y_dims, trans_a, trans_b, &fc_info);

  xpu::Context* xpu_ctx = dev_ctx.x_context();

  phi::MatMulXPUFunction<XPUType>(
      xpu_ctx, x_ptr, y_ptr, out_ptr, fc_info, 1.0f);
}

82 83 84 85
}  // namespace phi

PD_REGISTER_KERNEL(
    matmul, XPU, ALL_LAYOUT, phi::MatmulKernel, float, phi::dtype::float16) {}
W
Weilong Wu 已提交
86 87 88 89 90 91 92

PD_REGISTER_KERNEL(matmul_with_flatten,
                   XPU,
                   ALL_LAYOUT,
                   phi::MatmulWithFlattenKernel,
                   float,
                   phi::dtype::float16) {}