test_eager_run_program.py 4.2 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
from paddle import _C_ops
J
Jiabin Yang 已提交
18
from paddle.fluid.framework import _test_eager_guard, Variable, _in_legacy_dygraph
0
0x45f 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from paddle.fluid import core
from paddle.fluid.layers.utils import _hash_with_id
import paddle.compat as cpt

import unittest


def _append_backward_desc(main_program, outs):
    # make sure all status of is_test are False in train mode.
    program = main_program.clone()
    targets = []
    for out in outs:
        if isinstance(out, Variable):
            targets.append(program.global_block().var(out.name))

    if targets:
        paddle.fluid.backward.gradients(targets=targets, inputs=[])

    return program


# def _set_grad_type(params, train_program):
#     # NOTE: if user set sparse gradient mode, the param's gradient
#     # will be SelectedRows, not LoDTensor. But tracer will just
#     # set param grad VarBase by forward VarBase(LoDTensor)
#     # If we don't change grad_var type here, RunProgramOp need
#     # transform SelectedRows to LoDTensor forcibly, it may not
#     # be user wanted result.
#     for param in params:
#         grad_name = param.name + core.grad_var_suffix()
#         grad_var = train_program.desc.block(0).find_var(
#             cpt.to_bytes(grad_name))
#         # NOTE: cannot find var desc maybe no problem, such as in batch_norm
#         if grad_var is None:
#             continue
#         param._set_grad_type(grad_var.type())


def _create_out(var):
    assert isinstance(var, Variable)
    var_desc = var.desc
    varbase = None
J
Jiabin Yang 已提交
61
    if _in_legacy_dygraph():
0
0x45f 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        var_base = core.VarBase(var_desc.dtype(),
                                var_desc.shape(),
                                var_desc.name(), var_desc.type(), False)
    else:
        var_base = core.eager.Tensor(var_desc.dtype(),
                                     var_desc.shape(),
                                     var_desc.name(), var_desc.type(), False)
    return var_base


class TestRunProgram(unittest.TestCase):
    def test_eager(self):
        paddle.set_device('cpu')
        paddle.enable_static()
        # step 1: construct program
        x = paddle.static.data(shape=[2, 4], name='x')
        x.stop_gradient = False
        y = paddle.static.data(shape=[4, 2], name='y')
        y.stop_gradient = False
        out = paddle.matmul(x, y)

        main_program = paddle.static.default_main_program()
        program = _append_backward_desc(main_program, [out])

        paddle.disable_static('cpu')
        # step 2: call run_program in eager mode
        with _test_eager_guard():
            x_t = paddle.ones([2, 4])
            x_t.name = "x"
            x_t.stop_gradient = False
            y_t = paddle.ones([4, 2])
            y_t.name = "y"
            y_t.stop_gradient = False

            fake_var = paddle.zeros([1])
            fake_var.name = 'Fake_var'

            out_t = _create_out(out)

            scope = core.Scope()
            attrs = ('global_block', program.desc.block(0), 'start_op_index', 0,
                     'end_op_index', main_program.desc.block(0).op_size(),
                     'is_test', False, 'program_id', _hash_with_id(program))

            _C_ops.run_program([x_t, y_t], [fake_var], [out_t], [scope],
                               [fake_var], *attrs)

            loss = paddle.mean(out_t)
            loss.backward()

            self.assertTrue(np.array_equal(np.ones([2, 2]) * 4, out_t.numpy()))
            self.assertTrue(
                np.array_equal(np.ones([2, 4]) * 0.5, x_t.grad.numpy()))
            self.assertTrue(
                np.array_equal(np.ones([4, 2]) * 0.5, y_t.grad.numpy()))


if __name__ == '__main__':
    unittest.main()