test_imperative_basic.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17 18 19 20
import unittest
import numpy as np

import paddle.fluid as fluid
from paddle.fluid import core
L
lujun 已提交
21
from paddle.fluid.dygraph.nn import FC
M
minqiyang 已提交
22
from test_imperative_base import new_program_scope
23 24


L
lujun 已提交
25
class MyLayer(fluid.dygraph.Layer):
X
Xin Pan 已提交
26 27
    def __init__(self, name_scope):
        super(MyLayer, self).__init__(name_scope)
28 29

    def forward(self, inputs):
M
minqiyang 已提交
30
        x = fluid.layers.relu(inputs)
31
        self._x_for_debug = x
X
Xin Pan 已提交
32 33 34
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
35 36


L
lujun 已提交
37
class MyPyLayer(fluid.dygraph.PyLayer):
X
Xin Pan 已提交
38 39 40 41 42
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
43
        return np.tanh(inputs[0])
X
Xin Pan 已提交
44 45

    @staticmethod
X
Xin Pan 已提交
46 47
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
48
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
49 50


L
lujun 已提交
51
class MLP(fluid.dygraph.Layer):
X
Xin Pan 已提交
52 53
    def __init__(self, name_scope):
        super(MLP, self).__init__(name_scope)
M
minqiyang 已提交
54 55 56 57 58 59 60 61 62
        self._fc1 = FC(self.full_name(), 3)
        #  self._fc2 = FC(self.full_name(),
        #  4)
        #  self._fc3 = FC(self.full_name(),
        #  4)
        self._fc_list = []
        for i in range(100):
            fc3 = FC(self.full_name(), 4)
            self._fc_list.append(fc3)
X
Xin Pan 已提交
63 64

    def forward(self, inputs):
M
minqiyang 已提交
65
        x = self._fc1(inputs)
M
minqiyang 已提交
66 67 68 69
        y1 = self._fc2(x)
        y2 = self._fc3(x)
        z = fluid.layers.concat([y1, y2])
        x = fluid.layers.reduce_sum(z)
X
Xin Pan 已提交
70 71 72
        return x


L
lujun 已提交
73
class SimpleRNNCell(fluid.dygraph.Layer):
X
Xin Pan 已提交
74 75 76
    def __init__(self, name_scope, step_input_size, hidden_size, output_size,
                 param_attr):
        super(SimpleRNNCell, self).__init__(name_scope)
77 78 79
        self.step_input_size = step_input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
80 81
        self._dtype = core.VarDesc.VarType.FP32
        self.param_attr = param_attr
82 83 84 85 86

    def _build_once(self, inputs, pre_hidden):
        i2h_param_shape = [self.step_input_size, self.hidden_size]
        h2h_param_shape = [self.hidden_size, self.hidden_size]
        h2o_param_shape = [self.output_size, self.hidden_size]
87 88
        self._i2h_w = self.create_parameter(
            attr=self.param_attr,
89 90 91
            shape=i2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
92 93
        self._h2h_w = self.create_parameter(
            attr=self.param_attr,
94 95 96
            shape=h2h_param_shape,
            dtype=self._dtype,
            is_bias=False)
97 98
        self._h2o_w = self.create_parameter(
            attr=self.param_attr,
99 100 101 102 103 104
            shape=h2o_param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input, pre_hidden):

105 106 107 108 109 110
        tmp_i2h = self.create_variable(dtype=self._dtype)
        tmp_h2h = self.create_variable(dtype=self._dtype)
        hidden = self.create_variable(dtype=self._dtype)
        out = self.create_variable(dtype=self._dtype)
        softmax_out = self.create_variable(dtype=self._dtype)
        reduce_out = self.create_variable(dtype=self._dtype)
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        self._helper.append_op(
            type="mul",
            inputs={"X": input,
                    "Y": self._i2h_w},
            outputs={"Out": tmp_i2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="mul",
            inputs={"X": pre_hidden,
                    "Y": self._h2h_w},
            outputs={"Out": tmp_h2h},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="elementwise_add",
            inputs={'X': tmp_h2h,
                    'Y': tmp_i2h},
            outputs={'Out': hidden},
            attrs={'axis': -1,
                   'use_mkldnn': False})
134
        hidden = self._helper.append_activation(hidden, act='tanh')
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

        self._helper.append_op(
            type="mul",
            inputs={"X": hidden,
                    "Y": self._h2o_w},
            outputs={"Out": out},
            attrs={"x_num_col_dims": 1,
                   "y_num_col_dims": 1})

        self._helper.append_op(
            type="softmax",
            inputs={"X": out},
            outputs={"Out": softmax_out},
            attrs={"use_cudnn": False})

        self._helper.append_op(
            type='reduce_sum',
            inputs={'X': softmax_out},
            outputs={'Out': reduce_out},
154
            attrs={'dim': [],
155 156 157 158 159 160
                   'keep_dim': False,
                   'reduce_all': True})

        return reduce_out, hidden


L
lujun 已提交
161
class SimpleRNN(fluid.dygraph.Layer):
X
Xin Pan 已提交
162 163
    def __init__(self, name_scope):
        super(SimpleRNN, self).__init__(name_scope)
J
JiabinYang 已提交
164 165
        self.seq_len = 4
        self._cell = SimpleRNNCell(
X
Xin Pan 已提交
166
            self.full_name(),
J
JiabinYang 已提交
167 168 169 170
            3,
            3,
            3,
            fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
J
JiabinYang 已提交
171 172

    def forward(self, inputs):
J
JiabinYang 已提交
173
        outs = list()
J
JiabinYang 已提交
174 175
        pre_hiddens = list()

176
        init_hidden = self.create_parameter(
J
JiabinYang 已提交
177 178 179 180 181 182
            attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.1)),
            shape=[1, 3],
            dtype='float32',
            is_bias=False)
        pre_hidden = init_hidden
J
JiabinYang 已提交
183
        for i in range(self.seq_len):
J
JiabinYang 已提交
184 185 186
            input = fluid.layers.slice(
                inputs, axes=[1], starts=[i], ends=[i + 1])
            input = fluid.layers.reshape(input, shape=[1, 3])
J
JiabinYang 已提交
187 188
            out_softmax, pre_hidden = self._cell(input, pre_hidden)
            outs.append(out_softmax)
J
JiabinYang 已提交
189

J
JiabinYang 已提交
190
        return outs, pre_hiddens
J
JiabinYang 已提交
191 192


M
minqiyang 已提交
193
class TestImperative(unittest.TestCase):
M
minqiyang 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    #  def test_sum_op(self):
    #  x = np.ones([2, 2], np.float32)
    #  with fluid.dygraph.guard():
    #  inputs = []
    #  for _ in range(10):
    #  inputs.append(fluid.dygraph.base.to_variable(x))
    #  ret = fluid.layers.sums(inputs)
    #  loss = fluid.layers.reduce_sum(ret)
    #  loss._backward()
    #  self.assertTrue(np.allclose(ret._numpy(), x * 10))
    #  self.assertTrue(np.allclose(inputs[0]._gradient(), x))

    #  def test_layer(self):
    #  with fluid.dygraph.guard():
    #  cl = core.Layer()
    #  cl.forward([])
    #  l = fluid.dygraph.Layer("l")
    #  self.assertRaises(NotImplementedError, l.forward, [])

    #  def test_pylayer_func_id(self):

    #  with fluid.dygraph.guard():

    #  class PyLayer1(fluid.dygraph.PyLayer):
    #  def __init__(self):
    #  super(PyLayer1, self).__init__()

    #  @staticmethod
    #  def forward(input):
    #  return input

    #  @staticmethod
    #  def backward(input):
    #  return input

    #  class PyLayer2(fluid.dygraph.PyLayer):
    #  def __init__(self):
    #  super(PyLayer2, self).__init__()

    #  @staticmethod
    #  def forward(input):
    #  return input

    #  @staticmethod
    #  def backward(input):
    #  return input

    #  py_layer_1 = PyLayer1()
    #  py_layer_2 = PyLayer2()
    #  py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
    #  py_layer_2(fluid.dygraph.base.to_variable(np.ones([2, 2])))
    #  id = py_layer_1.forward_id
    #  self.assertGreater(id, 0)
    #  self.assertEqual(py_layer_1.backward_id, id + 1)
    #  self.assertEqual(py_layer_2.forward_id, id + 2)
    #  self.assertEqual(py_layer_2.backward_id, id + 3)
    #  py_layer_1(fluid.dygraph.base.to_variable(np.ones([2, 2])))
    #  self.assertEqual(py_layer_1.forward_id, id)

    #  def test_pylayer(self):
    #  np_inp = np.ones([2, 2], np.float32)
    #  with fluid.dygraph.guard():
    #  my_py_layer = MyPyLayer()
    #  var_inp = fluid.dygraph.base.to_variable(np_inp)
    #  outs = my_py_layer(var_inp)
    #  dy_out = np.sum(outs[0]._numpy())
    #  outs[0]._backward()
    #  dy_grad = var_inp._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[2, 2], append_batch_size=False)
    #  # TODO(panyx0718): Paddle doesn't diff against data `inp`.
    #  x1 = inp * 1
    #  # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
    #  x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
    #  param_grads = fluid.backward.append_backward(
    #  x, parameter_list=[x1.name])[0]
    #  exe = fluid.Executor(fluid.CPUPlace(
    #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

    #  static_out, static_grad = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[x.name, param_grads[1].name])

    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad, static_grad))

    #  def test_layer_in_out(self):
    #  np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
    #  with fluid.dygraph.guard():
    #  var_inp = fluid.dygraph.base.to_variable(np_inp)
    #  l = MyLayer("my_layer")
    #  x = l(var_inp)[0]
    #  self.assertIsNotNone(x)
    #  dy_out = x._numpy()
    #  x._backward()
    #  dy_grad = l._x_for_debug._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[3], append_batch_size=False)
    #  l = MyLayer("my_layer")
    #  x = l(inp)[0]
    #  param_grads = fluid.backward.append_backward(
    #  x, parameter_list=[l._x_for_debug.name])[0]
    #  exe = fluid.Executor(fluid.CPUPlace(
    #  ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

    #  static_out, static_grad = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[x.name, param_grads[1].name])

    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad, static_grad))
M
minqiyang 已提交
309 310

    def test_mlp(self):
M
minqiyang 已提交
311
        seed = 90
M
minqiyang 已提交
312
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
M
minqiyang 已提交
313 314 315 316
        with fluid.dygraph.guard(place=fluid.CPUPlace()):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

L
lujun 已提交
317
            var_inp = fluid.dygraph.base.to_variable(np_inp)
M
minqiyang 已提交
318
            mlp = MLP("mlp")
M
minqiyang 已提交
319 320 321 322 323 324 325 326 327
            opt = fluid.optimizer.SGDOptimizer(learning_rate=0.001)
            for i in range(100):
                out = mlp(var_inp)
                dy_out = out._numpy()
                out._backward()
                opt.minimize(out)
                dy_grad = mlp._fc1._w._gradient()
                dy_fc0_w0 = mlp._fc1._w._numpy()
                mlp.clear_gradients()
M
minqiyang 已提交
328 329

        with new_program_scope():
M
minqiyang 已提交
330 331 332
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
333 334 335 336
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP("mlp")
            out = mlp(inp)
M
minqiyang 已提交
337 338 339 340 341
            opt = fluid.optimizer.SGDOptimizer(learning_rate=0.001)
            opt.minimize(out)
            #  param_grads = fluid.backward.append_backward(
            #  out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
M
minqiyang 已提交
342 343
            exe.run(fluid.default_startup_program())

M
minqiyang 已提交
344 345 346 347 348 349 350
            for i in range(100):
                static_out, static_grad, static_fc0_w0 = exe.run(
                    feed={inp.name: np_inp},
                    fetch_list=[
                        out.name, "mlp/MLP_0/FC_0.w_0@GRAD",
                        "mlp/MLP_0/FC_0.w_0"
                    ])
M
minqiyang 已提交
351

M
minqiyang 已提交
352
        print(dy_out, static_out)
M
minqiyang 已提交
353
        self.assertTrue(np.allclose(dy_out, static_out))
M
minqiyang 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        self.assertTrue(np.array_equal(dy_grad, static_grad))

        print(dy_fc0_w0, static_fc0_w0)
        #params = mlp.parameters(True)
        #self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
        #self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
        #self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
        #self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
        #self.assertEqual(len(params), 4)

        #sublayers = mlp.sublayers(True)
        #self.assertEqual(mlp._fc1, sublayers[0])
        #self.assertEqual(mlp._fc2, sublayers[1])
        #self.assertEqual(len(sublayers), 2)

    #  def test_rnn(self):
    #  np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
    #  [10.0, 11.0, 12.0]])
    #  np_inp = np_inp.reshape((1, 4, 3))
    #  np_inp = np_inp.astype(np.float32)
    #  with fluid.dygraph.guard():
    #  var_inp = fluid.dygraph.base.to_variable(np_inp)
    #  var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
    #  simple_rnn = SimpleRNN("simple_rnn")
    #  outs, pre_hiddens = simple_rnn.forward(var_inp)
    #  dy_out = outs[3]._numpy()
    #  outs[3]._backward()
    #  dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
    #  dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
    #  dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()

    #  with new_program_scope():
    #  inp = fluid.layers.data(
    #  name="inp", shape=[1, 4, 3], append_batch_size=False)
    #  simple_rnn = SimpleRNN("simple_rnn")
    #  outs, pre_hiddens = simple_rnn(inp)
    #  param_grads = fluid.backward.append_backward(outs[3])
    #  exe = fluid.Executor(fluid.CPUPlace())
    #  exe.run(fluid.default_startup_program())
    #  static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
    #  feed={inp.name: np_inp},
    #  fetch_list=[
    #  outs[3].name, param_grads[0][1].name,
    #  param_grads[1][1].name, param_grads[2][1].name
    #  ])
    #  self.assertTrue(np.allclose(dy_out, static_out))
    #  self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
    #  self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
    #  self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
M
minqiyang 已提交
403

404 405 406

if __name__ == '__main__':
    unittest.main()