PyDataProvider2.py 17.5 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cPickle
import logging
17 18 19 20
import collections
import functools
import itertools

Q
qijun 已提交
21 22
logging.basicConfig(format="[%(levelname)s %(asctime)s %(filename)s:%(lineno)s]"
                    " %(message)s")
Z
zhangjinchao01 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class SequenceType(object):
    NO_SEQUENCE = 0
    SEQUENCE = 1
    SUB_SEQUENCE = 2


# TODO(yuyang18): Add string data type here.
class DataType(object):
    Dense = 0
    SparseNonValue = 1
    SparseValue = 2
    Index = 3


class CacheType(object):
    NO_CACHE = 0  # No cache at all

    # First pass, read data from python.  And store them in memory. Read from
    # memory during rest passes.
    CACHE_PASS_IN_MEM = 1


class InputType(object):
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    """
    InputType is the base class for paddle input types.

    ..  note::

        this is a base class, and should never be used by user.

    :param dim: dimension of input. If the input is an integer, it means the
                value range. Otherwise, it means the size of layer.
    :type dim: int
    :param seq_type: sequence type of input. 0 means it is not a sequence. 1
                     means it is a variable length sequence. 2 means it is a
                     nested sequence.
    :type seq_type: int
    :param type: data type of input.
    :type type: int
    """
Z
zhangjinchao01 已提交
65 66 67 68 69 70 71 72 73
    __slots__ = ['dim', 'seq_type', 'type']

    def __init__(self, dim, seq_type, tp):
        self.dim = dim
        self.seq_type = seq_type
        self.type = tp


def dense_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
74
    """
75 76 77 78 79 80 81 82 83 84
    Dense Array. It means the input feature is dense array with float type.
    For example, if the input is an image with 28*28 pixels, the input of
    Paddle neural network could be a dense vector with dimension 784 or a
    numpy array with shape (28, 28).

    For the 2-D convolution operation, each sample in one mini-batch must have
    the similarly size in PaddlePaddle now. But, it supports variable-dimension
    feature across mini-batch. For the variable-dimension, the param dim is not
    used. While the data reader must yield numpy array and the data feeder will
    set the data shape correctly.
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
93 94 95 96
    return InputType(dim, seq_type, DataType.Dense)


def sparse_non_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
97 98 99 100 101 102 103 104 105 106 107
    """
    Sparse binary vector. It means the input feature is a sparse vector and the
    every element in this vector is either zero or one.

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of this input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
108 109 110 111
    return InputType(dim, seq_type, DataType.SparseNonValue)


def sparse_value_slot(dim, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
112 113 114 115 116 117 118 119 120 121 122
    """
    Sparse vector. It means the input feature is a sparse vector. Most of the
    elements in this vector are zero, others could be any float value.

    :param dim: dimension of this vector.
    :type dim: int
    :param seq_type: sequence type of this input.
    :type seq_type: int
    :return: An input type object.
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
123 124 125
    return InputType(dim, seq_type, DataType.SparseValue)


126
def index_slot(value_range, seq_type=SequenceType.NO_SEQUENCE):
Y
Yu Yang 已提交
127 128 129 130 131
    """
    Data type of integer.

    :param seq_type: sequence type of this input.
    :type seq_type: int
132
    :param value_range: range of this integer.
Y
Yu Yang 已提交
133 134 135
    :type value_range: int
    :return: An input type object
    :rtype: InputType
136
    """
137
    return InputType(value_range, seq_type, DataType.Index)
Z
zhangjinchao01 已提交
138 139 140 141 142 143 144


dense_vector = dense_slot
sparse_binary_vector = sparse_non_value_slot
sparse_vector = sparse_value_slot
integer_value = index_slot

145 146 147 148
# dense_array can be used for variable-length input feature.
# Each feature is not a vector, but a multi-dimensional array.
dense_array = dense_slot

149

Z
zhangjinchao01 已提交
150
def dense_vector_sequence(dim):
Y
Yu Yang 已提交
151 152 153 154 155 156 157 158
    """
    Data type of a sequence of dense vector.

    :param dim: dimension of dense vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
159 160
    return dense_vector(dim, seq_type=SequenceType.SEQUENCE)

161

Z
zhangjinchao01 已提交
162 163 164
def dense_vector_sub_sequence(dim):
    return dense_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

165

Z
zhangjinchao01 已提交
166
def sparse_binary_vector_sequence(dim):
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175
    """
    Data type of a sequence of sparse vector, which every element is either zero
     or one.

    :param dim: dimension of sparse vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
176 177
    return sparse_binary_vector(dim, seq_type=SequenceType.SEQUENCE)

178

Z
zhangjinchao01 已提交
179 180 181
def sparse_binary_vector_sub_sequence(dim):
    return sparse_binary_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

182

Z
zhangjinchao01 已提交
183
def sparse_vector_sequence(dim):
Y
Yu Yang 已提交
184 185 186 187 188 189 190 191 192
    """
    Data type of a sequence of sparse vector, which most elements are zero,
    others could be any float value.

    :param dim: dimension of sparse vector.
    :type dim: int
    :return: An input type object
    :rtype: InputType
    """
Z
zhangjinchao01 已提交
193 194
    return sparse_vector(dim, seq_type=SequenceType.SEQUENCE)

195

Z
zhangjinchao01 已提交
196 197 198
def sparse_vector_sub_sequence(dim):
    return sparse_vector(dim, seq_type=SequenceType.SUB_SEQUENCE)

199

200
def integer_value_sequence(value_range):
Y
Yu Yang 已提交
201 202 203
    """
    Data type of a sequence of integer.

204
    :param value_range: range of each element.
Y
Yu Yang 已提交
205
    :type value_range: int
206
    """
207
    return integer_value(value_range, seq_type=SequenceType.SEQUENCE)
Z
zhangjinchao01 已提交
208

209

Z
zhangjinchao01 已提交
210 211 212
def integer_value_sub_sequence(dim):
    return integer_value(dim, seq_type=SequenceType.SUB_SEQUENCE)

W
wangyanfei01 已提交
213

214
integer_sequence = integer_value_sequence
Z
zhangjinchao01 已提交
215 216 217 218 219 220 221 222


class SingleSlotWrapper(object):
    def __init__(self, generator):
        self.generator = generator

    def __call__(self, obj, filename):
        for item in self.generator(obj, filename):
223 224 225 226
            if isinstance(item, dict):
                yield item
            else:
                yield [item]
Z
zhangjinchao01 已提交
227 228


229 230 231 232 233 234 235 236
class InputOrderWrapper(object):
    def __init__(self, generator, input_order):
        self.generator = generator
        self.input_order = input_order

    def __call__(self, obj, filename):
        for item in self.generator(obj, filename):
            if isinstance(item, dict):
Q
qijun 已提交
237 238 239 240
                yield [
                    item.get(input_name, None)
                    for input_name in self.input_order
                ]
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            else:
                yield item


class CheckWrapper(object):
    def __init__(self, generator, input_types, check_fail_continue, logger):
        self.generator = generator
        self.input_types = input_types
        self.check_fail_continue = check_fail_continue
        self.logger = logger

    def __call__(self, obj, filename):
        for items in self.generator(obj, filename):
            try:
                assert len(items) == len(self.input_types)
                assert len(filter(lambda x: x is None, items)) == 0
                for item, input_type in itertools.izip(items, self.input_types):
                    callback = functools.partial(CheckWrapper.loop_callback,
                                                 input_type)

                    for _ in xrange(input_type.seq_type):
                        callback = functools.partial(CheckWrapper.loop_check,
                                                     callback)
                    callback(item)

                yield items
            except AssertionError as e:
                self.logger.warning(
Q
qijun 已提交
269 270
                    "Item (%s) is not fit the input type with error %s" %
                    (repr(item), repr(e)))
271 272 273 274 275 276 277 278 279 280 281 282 283

                if self.check_fail_continue:
                    continue
                else:
                    raise

    @staticmethod
    def loop_callback(input_type, each):
        assert isinstance(input_type, InputType)
        if input_type.type == DataType.Dense:
            assert isinstance(each, collections.Sequence)
            for d in each:
                assert isinstance(d, float)
Y
Yancey1989 已提交
284
            assert len(each) == input_type.dim
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        elif input_type.type == DataType.Index:
            assert isinstance(each, int)
            assert each < input_type.dim
        elif input_type.type == DataType.SparseNonValue \
                or input_type.type == DataType.SparseValue:
            assert isinstance(each, collections.Sequence)
            sparse_id = set()
            for k in each:
                if input_type.type == DataType.SparseValue:
                    k, v = k
                    assert isinstance(v, float)
                assert isinstance(k, int)
                assert k < input_type.dim
                sparse_id.add(k)
            assert len(sparse_id) == len(each)
        else:
            raise RuntimeError("Not support input type")

    @staticmethod
    def loop_check(callback, item):
        for each in item:
            callback(each)

Y
Yu Yang 已提交
308

309 310 311 312 313 314
class CheckInputTypeWrapper(object):
    def __init__(self, generator, input_types, logger):
        self.generator = generator
        self.input_types = input_types
        self.logger = logger

Y
Yu Yang 已提交
315 316 317
    def __call__(self, obj, filename):
        for items in self.generator(obj, filename):
            try:
Y
Yancey1989 已提交
318
                # dict type is required for input_types when item is dict type
Y
Yu Yang 已提交
319 320 321 322 323
                assert (isinstance(items, dict) and \
                        not isinstance(self.input_types, dict))==False
                yield items
            except AssertionError as e:
                self.logger.error(
324 325
                    "%s type is required for input type but got %s" %
                    (repr(type(items)), repr(type(self.input_types))))
Y
Yu Yang 已提交
326 327
                raise

328

Q
qijun 已提交
329 330 331
def provider(input_types=None,
             should_shuffle=None,
             pool_size=-1,
332
             min_pool_size=-1,
Z
zhangjinchao01 已提交
333 334 335
             can_over_batch_size=True,
             calc_batch_size=None,
             cache=CacheType.NO_CACHE,
Q
qijun 已提交
336 337 338
             check=False,
             check_fail_continue=False,
             init_hook=None,
Y
Yu Yang 已提交
339
             **outter_kwargs):
Z
zhangjinchao01 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    """
    Provider decorator. Use it to make a function into PyDataProvider2 object.
    In this function, user only need to get each sample for some train/test
    file.

    The basic usage is:

    ..  code-block:: python

        @provider(some data provider config here...)
        def process(settings, file_name):
            while not at end of file_name:
                sample = readOneSampleFromFile(file_name)
                yield sample.

    The configuration of data provider should be setup by\:

    :param input_types: Specify the input types, can also be set in init_hook.
358 359 360 361 362 363 364 365 366
                        It could be a list of InputType object. For example,
                        input_types=[dense_vector(9), integer_value(2)]. Or user
                        can set a dict of InputType object, which key is
                        data_layer's name. For example, input_types=\
                        {'img': img_features, 'label': label}. when using dict of
                        InputType, user could yield a dict of feature values, which
                        key is also data_layer's name.

    :type input_types: list|tuple|dict
367 368 369

    :param should_shuffle: True if data should shuffle. Pass None means shuffle
                           when is training and not to shuffle when is testing.
Z
zhangjinchao01 已提交
370
    :type should_shuffle: bool
371

Z
zhangjinchao01 已提交
372 373
    :param pool_size: Max number of sample in data pool.
    :type pool_size: int
374 375 376 377 378 379

    :param min_pool_size: Set minimal sample in data pool. The PaddlePaddle will
                          random pick sample in pool. So the min_pool_size
                          effect the randomize of data.
    :type min_pool_size: int

Z
zhangjinchao01 已提交
380 381 382 383 384
    :param can_over_batch_size: True if paddle can return a mini-batch larger
                                than batch size in settings. It is useful when
                                custom calculate one sample's batch_size.

                                It is very danger to set it to false and use
P
Peng Li 已提交
385
                                calc_batch_size together. Default is true.
386 387
    :type can_over_batch_size: bool

Z
zhangjinchao01 已提交
388 389 390
    :param calc_batch_size: a method to calculate each sample's batch size.
                            Default each sample's batch size is 1. But to you
                            can customize each sample's batch size.
391 392
    :type calc_batch_size: callable

Z
zhangjinchao01 已提交
393
    :param cache: Cache strategy of Data Provider. Default is CacheType.NO_CACHE
394
    :type cache: int
Z
zhangjinchao01 已提交
395 396 397 398 399

    :param init_hook: Initialize hook. Useful when data provider need load some
                      external data like dictionary. The parameter is
                      (settings, file_list, \*\*kwargs).

400 401 402 403 404
                      - settings. It is the global settings object. User can set
                        settings.input_types here.
                      - file_list. All file names for passed to data provider.
                      - is_train. Is this data provider used for training or not.
                      - kwargs. Other keyword arguments passed from
Z
zhangjinchao01 已提交
405
                        trainer_config's args parameter.
406 407 408 409 410 411 412 413 414 415 416
    :type init_hook: callable

    :param check: Check the yield data format is as same as input_types. Enable
                  this will make data provide process slow but it is very useful
                  for debug. Default is disabled.
    :type check: bool

    :param check_fail_continue: Continue train or not when check failed. Just
                                drop the wrong format data when it is True. Has
                                no effect when check set to False.
    :type check_fail_continue: bool
Z
zhangjinchao01 已提交
417 418 419 420 421 422 423 424 425
    """

    def __wrapper__(generator):
        class DataProvider(object):
            def __init__(self, file_list, **kwargs):
                self.logger = logging.getLogger("")
                self.logger.setLevel(logging.INFO)
                self.input_types = None
                self.should_shuffle = should_shuffle
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

                true_table = [1, 't', 'true', 'on']
                false_table = [0, 'f', 'false', 'off']
                if not isinstance(self.should_shuffle, bool) and \
                                self.should_shuffle is not None:

                    if isinstance(self.should_shuffle, basestring):
                        self.should_shuffle = self.should_shuffle.lower()

                    if self.should_shuffle in true_table:
                        self.should_shuffle = True
                    elif self.should_shuffle in false_table:
                        self.should_shuffle = False
                    else:
                        self.logger.warning(
                            "Could not recognize should_shuffle (%s), "
                            "just use default value of should_shuffle."
                            " Please set should_shuffle to bool value or "
Q
qijun 已提交
444 445 446
                            "something in %s" %
                            (repr(self.should_shuffle),
                             repr(true_table + false_table)))
447 448
                        self.should_shuffle = None

Z
zhangjinchao01 已提交
449 450 451 452 453 454
                self.pool_size = pool_size
                self.can_over_batch_size = can_over_batch_size
                self.calc_batch_size = calc_batch_size
                self.file_list = file_list
                self.generator = generator
                self.cache = cache
455 456 457
                self.min_pool_size = min_pool_size
                self.input_order = kwargs['input_order']
                self.check = check
Z
zhangjinchao01 已提交
458 459
                if init_hook is not None:
                    init_hook(self, file_list=file_list, **kwargs)
Y
Yu Yang 已提交
460 461 462 463 464 465 466 467

                if 'slots' in outter_kwargs:
                    self.logger.warning('setting slots value is deprecated, '
                                        'please use input_types instead.')
                    self.slots = outter_kwargs['slots']
                if input_types is not None:
                    self.slots = input_types

Z
zhangjinchao01 已提交
468 469
                if self.input_types is not None:
                    self.slots = self.input_types
Y
Yu Yang 已提交
470 471 472

                assert self.slots is not None, \
                    "Data Provider's input_types must be set"
Z
zhangjinchao01 已提交
473 474
                assert self.generator is not None

475 476 477 478 479
                use_dynamic_order = False
                if isinstance(self.slots, dict):  # reorder input_types
                    self.slots = [self.slots[ipt] for ipt in self.input_order]
                    use_dynamic_order = True

Z
zhangjinchao01 已提交
480 481 482
                if len(self.slots) == 1:
                    self.generator = SingleSlotWrapper(self.generator)

483 484 485
                if use_dynamic_order:
                    self.generator = InputOrderWrapper(self.generator,
                                                       self.input_order)
486
                else:
Y
Yu Yang 已提交
487 488
                    self.generator = CheckInputTypeWrapper(
                        self.generator, self.slots, self.logger)
489
                if self.check:
Q
qijun 已提交
490
                    self.generator = CheckWrapper(self.generator, self.slots,
491 492 493
                                                  check_fail_continue,
                                                  self.logger)

Z
zhangjinchao01 已提交
494 495 496 497 498 499 500 501 502 503 504 505
        return DataProvider

    return __wrapper__


def deserialize_args(args):
    """
    Internal use only.
    :param args:
    :return:
    """
    return cPickle.loads(args)