test_imperative_optimizer_v2.py 27.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import contextlib
import unittest
import numpy as np
import six
import itertools

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
26
from paddle.fluid.optimizer import MomentumOptimizer, LarsMomentumOptimizer, AdagradOptimizer, AdamaxOptimizer, DpsgdOptimizer, DecayedAdagradOptimizer, AdadeltaOptimizer, RMSPropOptimizer, FtrlOptimizer
M
MRXLT 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
from paddle.fluid.optimizer import ModelAverage, DGCMomentumOptimizer, ExponentialMovingAverage, PipelineOptimizer, LookaheadOptimizer, RecomputeOptimizer
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope

# Note(wangzhongpu)
# In dygraph, don't support ModelAverage, DGCMomentumOptimizer, ExponentialMovingAverage, PipelineOptimizer, LookaheadOptimizer, RecomputeOptimizer.


class MLP(fluid.Layer):
    def __init__(self, param_attr=None, bias_attr=None):
        super(MLP, self).__init__()

        self._fc1 = Linear(784, 10)
        self._fc2 = Linear(10, 10)

    def forward(self, inputs):
        y = self._fc1(inputs)
        y = self._fc2(y)
        return y


class TestImperativeOptimizerBase(unittest.TestCase):
    def setUp(self):
        self.batch_num = 20

    def get_optimizer_dygraph(self, parameter_list):
        raise NotImplementedError()

    def get_optimizer(self):
        raise NotImplementedError()

    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 784)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

    def _check_exception(self, exception_message, place=None):
        seed = 90
        batch_size = 128
        if place == None:
            place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()

75 76
        try:
            paddle.disable_static()
C
cnn 已提交
77
            paddle.seed(seed)
78 79 80 81 82 83 84 85
            paddle.framework.random._manual_program_seed(seed)
            mlp = MLP()
            optimizer = self.get_optimizer_dygraph(
                parameter_list=mlp.parameters())
        except Exception as e:
            assert str(e) == exception_message
        finally:
            paddle.enable_static()
M
MRXLT 已提交
86 87 88 89 90 91 92 93 94

    def _check_mlp(self, place=None):
        seed = 90
        batch_size = 128

        if place == None:
            place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)

95
        paddle.disable_static(place)
C
cnn 已提交
96
        paddle.seed(seed)
97
        paddle.framework.random._manual_program_seed(seed)
M
MRXLT 已提交
98

99 100
        mlp = MLP()
        optimizer = self.get_optimizer_dygraph(parameter_list=mlp.parameters())
M
MRXLT 已提交
101

102 103 104 105 106 107 108
        batch_py_reader = fluid.io.PyReader(capacity=1)
        batch_py_reader.decorate_sample_list_generator(
            paddle.batch(
                self.reader_decorator(paddle.dataset.mnist.train()),
                batch_size=batch_size,
                drop_last=True),
            places=fluid.CPUPlace())
M
MRXLT 已提交
109

110 111 112 113
        dy_param_init_value = {}
        for batch_id, data in enumerate(batch_py_reader()):
            if batch_id >= self.batch_num:
                break
M
MRXLT 已提交
114

115 116
            img = data[0]
            label = data[1]
M
MRXLT 已提交
117

118
            label.stop_gradient = True
M
MRXLT 已提交
119

120 121 122 123
            img = fluid.layers.reshape(img, shape=[batch_size, -1])
            cost = mlp(img)
            avg_loss = fluid.layers.reduce_mean(cost)
            dy_out = avg_loss.numpy()
M
MRXLT 已提交
124

125
            if batch_id == 0:
M
MRXLT 已提交
126
                for param in mlp.parameters():
127
                    dy_param_init_value[param.name] = param.numpy()
M
MRXLT 已提交
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            if isinstance(optimizer._learning_rate,
                          paddle.optimizer.lr.LRScheduler):
                if isinstance(optimizer._learning_rate,
                              paddle.optimizer.lr.ReduceOnPlateau):
                    optimizer._learning_rate.step(avg_loss)
                else:
                    optimizer._learning_rate.step()
            mlp.clear_gradients()
            dy_param_value = {}
            for param in mlp.parameters():
                dy_param_value[param.name] = param.numpy()

        paddle.enable_static()
M
MRXLT 已提交
144
        with new_program_scope():
C
cnn 已提交
145
            paddle.seed(seed)
L
Leo Chen 已提交
146
            paddle.framework.random._manual_program_seed(seed)
M
MRXLT 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

            if place == None:
                place = fluid.CPUPlace() if not core.is_compiled_with_cuda(
                ) else fluid.CUDAPlace(0)

            exe = fluid.Executor(place)

            mlp = MLP()
            optimizer = self.get_optimizer()
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            img = fluid.layers.reshape(img, shape=[batch_size, 784])
            cost = mlp(img)
            avg_loss = fluid.layers.reduce_mean(cost)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            for param in mlp.parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

            for batch_id, data in enumerate(train_reader()):
                if batch_id >= self.batch_num:
                    break

                static_x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

                fetch_list = [avg_loss.name]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={"pixel": static_x_data,
                                    "label": y_data},
                              fetch_list=fetch_list)
194 195 196 197 198 199 200
                if isinstance(optimizer._learning_rate,
                              paddle.optimizer.lr.LRScheduler):
                    if isinstance(optimizer._learning_rate,
                                  paddle.optimizer.lr.ReduceOnPlateau):
                        optimizer._learning_rate.step(out[0])
                    else:
                        optimizer._learning_rate.step()
M
MRXLT 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value, dy_param_value[key]))


class TestImperativeOptimizerPiecewiseDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        bd = [3, 6, 9]
219 220
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
M
MRXLT 已提交
221 222
                boundaries=bd,
                values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]),
223
            parameters=parameter_list)
M
MRXLT 已提交
224 225 226 227
        return optimizer

    def get_optimizer(self):
        bd = [3, 6, 9]
228 229 230 231
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.PiecewiseDecay(
                boundaries=bd,
                values=[0.1 * (0.1**i) for i in range(len(bd) + 1)]))
M
MRXLT 已提交
232 233 234 235 236 237 238 239
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNaturalExpDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
240 241 242 243
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.NaturalExpDecay(
                learning_rate=0.5, gamma=0.9),
            parameters=parameter_list)
M
MRXLT 已提交
244 245 246
        return optimizer

    def get_optimizer(self):
247 248 249
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.NaturalExpDecay(
                learning_rate=0.5, gamma=0.9))
M
MRXLT 已提交
250 251 252 253 254 255 256 257
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerExponentialDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
258 259 260 261
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.ExponentialDecay(
                learning_rate=0.5, gamma=0.9),
            parameters=parameter_list)
M
MRXLT 已提交
262 263 264
        return optimizer

    def get_optimizer(self):
265 266 267
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.ExponentialDecay(
                learning_rate=0.5, gamma=0.9))
M
MRXLT 已提交
268 269 270 271 272 273 274 275
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerInverseTimeDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
276 277 278 279
        optimizer = paddle.optimizer.Adam(
            learning_rate=paddle.optimizer.lr.InverseTimeDecay(
                learning_rate=0.5, gamma=0.9),
            parameters=parameter_list)
M
MRXLT 已提交
280 281 282
        return optimizer

    def get_optimizer(self):
283 284 285
        optimizer = paddle.optimizer.Adam(
            learning_rate=paddle.optimizer.lr.InverseTimeDecay(
                learning_rate=0.5, gamma=0.9))
M
MRXLT 已提交
286 287 288 289 290 291 292 293
        return optimizer

    def test_adam(self):
        self._check_mlp()


class TestImperativeOptimizerPolynomialDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
294 295 296 297
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.PolynomialDecay(
                learning_rate=0.5, decay_steps=5, cycle=self.cycle),
            parameters=parameter_list)
M
MRXLT 已提交
298 299 300
        return optimizer

    def get_optimizer(self):
301 302 303
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.PolynomialDecay(
                learning_rate=0.5, decay_steps=5, cycle=self.cycle))
M
MRXLT 已提交
304 305 306 307 308 309 310 311 312 313 314
        return optimizer

    def test_sgd_cycle(self):
        self.cycle = True
        self._check_mlp()

    def test_sgd(self):
        self.cycle = False
        self._check_mlp()


315
class TestImperativeOptimizerCosineAnnealingDecay(TestImperativeOptimizerBase):
M
MRXLT 已提交
316
    def get_optimizer_dygraph(self, parameter_list):
317 318 319 320
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.CosineAnnealingDecay(
                learning_rate=0.5, T_max=5),
            parameters=parameter_list)
M
MRXLT 已提交
321 322 323
        return optimizer

    def get_optimizer(self):
324 325 326
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.CosineAnnealingDecay(
                learning_rate=0.5, T_max=5))
M
MRXLT 已提交
327 328 329 330 331 332 333 334
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerNoamDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.NoamDecay(
                d_model=0.01, warmup_steps=100, verbose=True),
            parameters=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.NoamDecay(
                d_model=0.01, warmup_steps=100))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerLambdaDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.LambdaDecay(
                learning_rate=0.5, lr_lambda=lambda epoch: 0.9**epoch),
            parameters=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.LambdaDecay(
                learning_rate=0.5, lr_lambda=lambda epoch: 0.9**epoch))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerLinearWarmup(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.LinearWarmup(
                learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5),
            parameters=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.LinearWarmup(
                learning_rate=0.5,
                warmup_steps=20,
                start_lr=0,
                end_lr=0.5,
                verbose=True))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerMultiStepDecay(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.MultiStepDecay(
                learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8),
            parameters=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.MultiStepDecay(
                learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerStepLR(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.StepDecay(
                learning_rate=0.5, step_size=5, gamma=0.8),
            parameters=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.StepDecay(
                learning_rate=0.5, step_size=5, gamma=0.8))
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestImperativeOptimizerReduceOnPlateau(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.ReduceOnPlateau(
                learning_rate=0.5),
            parameters=parameter_list)
M
MRXLT 已提交
433 434 435
        return optimizer

    def get_optimizer(self):
436 437 438
        optimizer = paddle.optimizer.SGD(
            learning_rate=paddle.optimizer.lr.ReduceOnPlateau(
                learning_rate=0.5))
M
MRXLT 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        return optimizer

    def test_sgd(self):
        self._check_mlp()


class TestOptimizerLearningRate(unittest.TestCase):
    def test_constant_lr(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)

            adam = paddle.optimizer.Adam(0.001, parameters=linear.parameters())

            self.assertTrue(
                np.allclose(
                    adam.get_lr(), 0.001, rtol=1e-06, atol=0.0))

            for i in range(10):
                adam.minimize(loss)
                lr = adam.get_lr()

                self.assertTrue(np.allclose(lr, 0.001, rtol=1e-06, atol=0.0))

    def test_lr_decay(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)

            bd = [2, 4, 6, 8]
            value = [0.2, 0.4, 0.6, 0.8, 1.0]

485
            scheduler = paddle.optimizer.lr.PiecewiseDecay(bd, value)
M
MRXLT 已提交
486
            adam = paddle.optimizer.Adam(
487
                scheduler, parameters=linear.parameters())
M
MRXLT 已提交
488 489 490 491 492 493 494 495 496 497

            self.assertTrue(
                np.allclose(
                    adam.get_lr(), 0.2, rtol=1e-06, atol=0.0))

            ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
            for i in range(12):
                adam.minimize(loss)
                lr = adam.get_lr()
                self.assertTrue(np.allclose(lr, ret[i], rtol=1e-06, atol=0.0))
498
                scheduler.step()
M
MRXLT 已提交
499

500
    def test_lr_scheduler_natural_exp(self):
M
MRXLT 已提交
501 502 503 504 505 506 507 508 509 510
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)
            a = fluid.dygraph.to_variable(a)
            b = linear(a)

            loss = fluid.layers.reduce_mean(b)
            base_lr = 1.0

511
            scheduler = paddle.optimizer.lr.NaturalExpDecay(1.0, gamma=0.5)
M
MRXLT 已提交
512
            adam = paddle.optimizer.Adam(
513
                scheduler, parameters=linear.parameters())
M
MRXLT 已提交
514 515 516 517 518

            self.assertTrue(
                np.allclose(
                    adam.get_lr(), 1.0, rtol=1e-06, atol=0.0))

519 520
            ret = [1.0, np.exp(-0.5), np.exp(-1)]
            for i in range(3):
M
MRXLT 已提交
521 522 523
                adam.minimize(loss)
                lr = adam.get_lr()
                self.assertTrue(np.allclose(lr, ret[i], rtol=1e-06, atol=0.0))
524
                scheduler.step()
M
MRXLT 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

    def test_set_lr(self):
        with fluid.dygraph.guard():
            a = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")

            linear = fluid.dygraph.nn.Linear(10, 10)

            a = fluid.dygraph.to_variable(a)

            b = linear(a)

            loss = fluid.layers.reduce_mean(b)

            adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())

            lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
            for i in range(5):
                adam.set_lr(lr_list[i])
                adam.minimize(loss)
                lr = adam.get_lr()
                self.assertTrue(
                    np.allclose(
                        lr, lr_list[i], rtol=1e-06, atol=0.0))

549 550 551 552
            with self.assertRaises(TypeError):
                lr_var = fluid.layers.create_global_var(
                    shape=[1], value=0.7, dtype='float32')
                adam.set_lr(lr_var)
M
MRXLT 已提交
553 554 555

            with self.assertRaises(RuntimeError):
                adam = paddle.optimizer.Adam(
556
                    paddle.optimizer.lr.NaturalExpDecay(
557
                        learning_rate=0.1, gamma=0.5),
M
MRXLT 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
                    parameters=linear.parameters())
                adam.set_lr(0.01)


class TestImperativeMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = MomentumOptimizer(
            learning_rate=0.001, momentum=0.9, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9)
        return optimizer

    def test_momentum(self):
        self._check_mlp()


class TestImperativeLarsMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = LarsMomentumOptimizer(
            learning_rate=0.001, momentum=0.9, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
        return optimizer

    def test_larsmomentum(self):
        self._check_mlp()


class TestImperativeAdagradOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdagradOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdagradOptimizer(learning_rate=0.2)
        return optimizer

    def test_adagrad(self):
        self._check_mlp()


class TestImperativeAdamaxOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdamaxOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdamaxOptimizer(learning_rate=0.2)
        return optimizer

    def test_adamax(self):
        self._check_mlp()


class TestImperativeDpsgdOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DpsgdOptimizer(
            learning_rate=0.01,
            clip=10.0,
            batch_size=16.0,
            sigma=1.0,
            parameter_list=parameter_list)
        optimizer._seed = 100
        return optimizer

    def get_optimizer(self):
        optimizer = DpsgdOptimizer(
            learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
        optimizer._seed = 100
        return optimizer

    def test_dpsgd(self):
        self._check_mlp(place=fluid.CPUPlace())


class TestImperativeDecayedAdagradOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DecayedAdagradOptimizer(
            learning_rate=0.2, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = DecayedAdagradOptimizer(learning_rate=0.2)
        return optimizer

    def test_decayadagrad(self):
        self._check_mlp()


class TestImperativeAdadeltaOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = AdadeltaOptimizer(
            learning_rate=0.0003,
            epsilon=1.0e-6,
            rho=0.95,
            parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = AdadeltaOptimizer(
            learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
        return optimizer

    def test_adadelta(self):
        self._check_mlp()


class TestImperativeRMSPropOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = RMSPropOptimizer(
            learning_rate=0.1, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = RMSPropOptimizer(learning_rate=0.1)
        return optimizer

    def test_rmsprop(self):
        self._check_mlp()


class TestImperativeFtrlOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = FtrlOptimizer(
            learning_rate=0.1, parameter_list=parameter_list)
        return optimizer

    def get_optimizer(self):
        optimizer = FtrlOptimizer(learning_rate=0.1)
        return optimizer

    def test_ftrl(self):
        self._check_mlp()


def exclude_fn(param):
    return param.name.endswith('.b_0')


class TestImperativeLambOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
705
        optimizer = paddle.optimizer.Lamb(
M
MRXLT 已提交
706 707
            learning_rate=0.002,
            exclude_from_weight_decay_fn=exclude_fn,
708
            parameters=parameter_list)
M
MRXLT 已提交
709 710 711
        return optimizer

    def get_optimizer(self):
712
        optimizer = paddle.optimizer.Lamb(
M
MRXLT 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
            learning_rate=0.002, exclude_from_weight_decay_fn=exclude_fn)
        return optimizer

    def test_lamb(self):
        self._check_mlp()


class TestImperativeModelAverage(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = ModelAverage(
            0.15, min_average_window=10000, max_average_window=12500)
        return optimizer

    def test_modelaverage(self):
        exception_message = "In dygraph, don't support ModelAverage."
        self._check_exception(exception_message)


class TestImperativeDGCMomentumOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = DGCMomentumOptimizer(
            learning_rate=0.0001,
            momentum=0.9,
            rampup_step=1000,
            rampup_begin_step=1252,
            sparsity=[0.999, 0.999])
        return optimizer

    def test_dgcmomentum(self):
        exception_message = "In dygraph, don't support DGCMomentumOptimizer."
        self._check_exception(exception_message)


class TestImperativeExponentialMovingAverage(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = ExponentialMovingAverage(0.999)
        return optimizer

    def test_exponentialmoving(self):
        exception_message = "In dygraph, don't support ExponentialMovingAverage."
        self._check_exception(exception_message)


class TestImperativePipelineOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(learning_rate=0.5,
J
Jiawei Wang 已提交
759
                                         parameters=parameter_list)
M
MRXLT 已提交
760 761 762 763 764 765 766 767 768 769 770
        optimizer = PipelineOptimizer(optimizer)
        return optimizer

    def test_pipline(self):
        exception_message = "In dygraph, don't support PipelineOptimizer."
        self._check_exception(exception_message)


class TestImperativeLookaheadOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(learning_rate=0.5,
J
Jiawei Wang 已提交
771
                                         parameters=parameter_list)
M
MRXLT 已提交
772 773 774 775 776 777 778 779 780 781 782
        optimizer = LookaheadOptimizer(optimizer, alpha=0.5, k=5)
        return optimizer

    def test_lookahead(self):
        exception_message = "In dygraph, don't support LookaheadOptimizer."
        self._check_exception(exception_message)


class TestImperativeRecomputeOptimizer(TestImperativeOptimizerBase):
    def get_optimizer_dygraph(self, parameter_list):
        optimizer = paddle.optimizer.SGD(learning_rate=0.5,
J
Jiawei Wang 已提交
783
                                         parameters=parameter_list)
M
MRXLT 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797
        optimizer = RecomputeOptimizer(optimizer)
        return optimizer

    def test_recompute(self):
        exception_message = "In dygraph, don't support RecomputeOptimizer."
        self._check_exception(exception_message)


class TestImperativeOptimizerList(unittest.TestCase):
    def test_parameter_list(self):
        with fluid.dygraph.guard():
            linear_1 = Linear(10, 10)
            linear_2 = Linear(10, 10)

798 799 800 801
            sgd = paddle.optimizer.SGD(1.0,
                                       parameters=itertools.chain(
                                           linear_1.parameters(),
                                           linear_2.parameters()))
M
MRXLT 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

            in_np = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            in_data = fluid.dygraph.to_variable(in_np)

            y = linear_1(in_data)
            y = linear_2(y)
            loss = fluid.layers.reduce_mean(y)
            loss.backward()
            sgd.minimize(loss)

            self.assertTrue(
                len(sgd._parameter_list) ==
                len(linear_1.parameters() + linear_2.parameters()))


if __name__ == '__main__':
    unittest.main()