auto_checkpoint_utils.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.collective import CollectiveOptimizer, fleet
import os
import sys

23
from paddle.distributed.fleet.utils.fs import LocalFS, HDFSClient
24 25 26 27 28 29 30 31
import paddle.fluid.incubate.checkpoint.auto_checkpoint as acp
from paddle.fluid.incubate.checkpoint.checkpoint_saver import PaddleModel
from paddle.fluid.framework import program_guard
from paddle.fluid import unique_name

import numpy as np
from paddle.io import Dataset, BatchSampler, DataLoader

32 33
BATCH_NUM = 4
BATCH_SIZE = 1
34 35

#IMAGE_SIZE = 128
36
CLASS_NUM = 2
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

USE_GPU = False  # whether use GPU to run model
places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()

logger = None


def get_logger():
    global logger
    logger = acp._get_logger(20)
    return logger


def get_random_images_and_labels(image_shape, label_shape):
    image = np.random.random(size=image_shape).astype('float32')
    label = np.random.random(size=label_shape).astype('int64')
    return image, label


def sample_list_generator_creator():
    def __reader__():
        for _ in range(BATCH_NUM):
            sample_list = []
            for _ in range(BATCH_SIZE):
61
                image, label = get_random_images_and_labels([4, 4], [1])
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
                sample_list.append([image, label])

            yield sample_list

    return __reader__


class AutoCheckpointBase(unittest.TestCase):
    def _init_env(self,
                  exe,
                  main_prog,
                  startup_prog,
                  minimize=True,
                  iterable=True):
        def simple_net():
77
            image = fluid.data(name='image', shape=[-1, 4, 4], dtype='float32')
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            label = fluid.data(name='label', shape=[-1, 1], dtype='int64')

            fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
            cross_entropy = fluid.layers.softmax_with_cross_entropy(fc_tmp,
                                                                    label)
            loss = fluid.layers.reduce_mean(cross_entropy)
            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            if minimize:
                sgd.minimize(loss)
            return sgd, loss, image, label

        with program_guard(main_prog, startup_prog):
            sgd, loss, image, label = simple_net()

            if minimize:
                compiled = fluid.CompiledProgram(main_prog).with_data_parallel(
                    loss_name=loss.name)
            else:
                compiled = None
            loader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=64,
                use_double_buffer=True,
                iterable=iterable)

            loader.set_sample_list_generator(sample_list_generator_creator(),
                                             places[0])

        if minimize:
            exe.run(startup_prog)

        return compiled, loader, sgd, loss, image, label

    def _generate(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        exe = fluid.Executor(places[0])

        return exe, main_prog, startup_prog

    def _reset_generator(self):
        unique_name.generator = fluid.unique_name.UniqueNameGenerator()
        acp.generator = fluid.unique_name.UniqueNameGenerator()
        acp.g_acp_type = None
        acp.g_checker = acp.AutoCheckpointChecker()
        acp.g_program_attr = {}

    def _clear_envs(self):
        os.environ.pop("PADDLE_RUNNING_ENV", None)

    def _readd_envs(self):
        os.environ["PADDLE_RUNNING_ENV"] = "PADDLE_EDL_AUTO_CHECKPOINT"