test_MKLDNN.cpp 8.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
#include <vector>
18
#include "MKLDNNTester.h"
T
tensor-tang 已提交
19
#include "ModelConfig.pb.h"
20
#include "paddle/gserver/activations/MKLDNNActivation.h"
T
tensor-tang 已提交
21
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
22 23 24 25 26 27 28

using namespace paddle;  // NOLINT

DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);

29 30 31 32 33 34 35 36 37 38 39 40
#define RUN_MKLDNN_TEST(DNN_CONFIG, REF_CONFIG, DESC)         \
  MKLDNNTester tester;                                        \
  for (auto bs : {DESC.bs, 1}) {                              \
    tester.run(DNN_CONFIG, REF_CONFIG, bs, DESC.ih, DESC.iw); \
  }

#define RUN_MKLDNN_TEST_LAYER(DNN_CONFIG, REF_TYPE, DESC) \
  TestConfig ref = DNN_CONFIG;                            \
  ref.layerConfig.set_type(REF_TYPE);                     \
  RUN_MKLDNN_TEST(DNN_CONFIG, ref, DESC)

struct testFcDesc {
T
tensor-tang 已提交
41 42 43 44 45 46
  int bs;
  int ic;
  int oc;
  int ih, iw;  // oh == ow == 1
};

47 48
static void getMKLDNNFcConfig(TestConfig& cfg, const testFcDesc& pm) {
  cfg.layerConfig.set_type("mkldnn_fc");
49
  cfg.layerConfig.set_active_type("sigmoid");
T
tensor-tang 已提交
50 51 52 53 54 55 56
  cfg.layerConfig.set_size(pm.oc);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
       /* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)});
  cfg.layerConfig.add_inputs();
57
}
T
tensor-tang 已提交
58

59 60 61
void testFcLayer(const testFcDesc& pm) {
  TestConfig dnnConfig;
  getMKLDNNFcConfig(dnnConfig, pm);
T
tensor-tang 已提交
62
  for (auto biasSize : {pm.oc, 0}) {
63 64
    dnnConfig.biasSize = biasSize;
    RUN_MKLDNN_TEST_LAYER(dnnConfig, "fc", pm)
T
tensor-tang 已提交
65 66 67
  }
}

68
TEST(MKLDNNLayer, FcLayer) {
69 70 71 72 73 74 75
  /* bs, ic, ih, iw, oc */
  testFcLayer({2, 2, 1, 1, 3});
  testFcLayer({3, 7, 1, 1, 19});
  testFcLayer({8, 16, 13, 13, 32});
  testFcLayer({4, 12, 13, 13, 18});
  testFcLayer({2, 64, 16, 16, 32});
  testFcLayer({15, 3, 16, 16, 6});
T
tensor-tang 已提交
76 77
}

T
tensor-tang 已提交
78 79 80 81 82 83 84 85 86 87
struct testConvDesc {
  int bs, gp;
  int ic, ih, iw;
  int oc, oh, ow;
  int fh, fw;
  int ph, pw;
  int sh, sw;
  int dh, dw;
};

88 89
static void getMKLDNNConvConfig(TestConfig& cfg, const testConvDesc& pm) {
  cfg.layerConfig.set_type("mkldnn_conv");
90
  cfg.layerConfig.set_active_type("relu");
T
tensor-tang 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  cfg.layerConfig.set_num_filters(pm.oc);
  cfg.layerConfig.set_size(pm.oc * pm.oh * pm.ow);
  cfg.layerConfig.set_shared_biases(true);
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
       /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
       /* size of weight= */ size_t(pm.oc * pm.ic * pm.fh * pm.fw / pm.gp)});
  LayerInputConfig* input = cfg.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_groups(pm.gp);
  conv->set_img_size(pm.iw);
  conv->set_img_size_y(pm.ih);
  conv->set_output_x(pm.ow);
  conv->set_output_y(pm.oh);
  conv->set_filter_size(pm.fw);
  conv->set_filter_size_y(pm.fh);
  conv->set_channels(pm.ic);
  conv->set_padding(pm.pw);
  conv->set_padding_y(pm.ph);
  conv->set_stride(pm.sw);
  conv->set_stride_y(pm.sh);
  conv->set_dilation(pm.dw);
  conv->set_dilation_y(pm.dh);
  conv->set_caffe_mode(true);
  conv->set_filter_channels(conv->channels() / conv->groups());
  CHECK_EQ(conv->filter_channels() * pm.gp, conv->channels())
      << "it is indivisible";

  int fh = (pm.fh - 1) * pm.dh + 1;
  int fw = (pm.fw - 1) * pm.dw + 1;
  int ow = outputSize(pm.iw, fw, pm.pw, pm.sw, true);
  int oh = outputSize(pm.ih, fh, pm.ph, pm.sh, true);
  CHECK_EQ(ow, pm.ow) << "output size check failed";
  CHECK_EQ(oh, pm.oh) << "output size check failed";
126
}
T
tensor-tang 已提交
127

128 129 130
void testConvLayer(const testConvDesc& pm) {
  TestConfig dnnConfig;
  getMKLDNNConvConfig(dnnConfig, pm);
T
tensor-tang 已提交
131
  for (auto biasSize : {pm.oc, 0}) {
132 133
    dnnConfig.biasSize = biasSize;
    RUN_MKLDNN_TEST_LAYER(dnnConfig, "exconv", pm)
T
tensor-tang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  }
}

TEST(MKLDNNLayer, ConvLayer) {
  /* bs, gp, ic, ih, iw, oc, oh, ow, fh, fw, ph, pw, sh, sw, dh, dw */
  testConvLayer({2, 1, 3, 32, 32, 16, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({2, 1, 8, 16, 16, 8, 16, 16, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({3, 1, 16, 32, 32, 3, 32, 32, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({8, 1, 16, 18, 18, 32, 18, 18, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({16, 1, 1, 42, 31, 32, 23, 11, 4, 5, 3, 2, 2, 3, 1, 1});
  testConvLayer({2, 1, 8, 16, 16, 8, 8, 8, 3, 3, 1, 1, 2, 2, 1, 1});
  testConvLayer({3, 1, 8, 13, 13, 8, 7, 7, 3, 3, 1, 1, 2, 2, 1, 1});
  // with groups
  testConvLayer({2, 2, 4, 5, 5, 8, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({2, 3, 3, 5, 5, 3, 5, 5, 3, 3, 1, 1, 1, 1, 1, 1});
  testConvLayer({4, 4, 16, 3, 3, 16, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1});
}

152
struct testPoolDesc {
153
  int bs, ic;  // input channel and output channel are the same
154 155 156 157 158 159 160
  int ih, iw;
  int oh, ow;
  int fh, fw;
  int ph, pw;
  int sh, sw;
};

161 162
static void getMKLDNNPoolConfig(TestConfig& cfg, const testPoolDesc& pm) {
  cfg.layerConfig.set_type("mkldnn_pool");
163
  cfg.layerConfig.set_active_type("relu");
164
  cfg.layerConfig.set_size(pm.ic * pm.oh * pm.ow);
165 166 167
  cfg.inputDefs.push_back(
      {INPUT_DATA,
       "layer_0",
168
       /* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
169 170 171
       0});
  LayerInputConfig* input = cfg.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();
172 173
  pool->set_pool_type("avg-projection");
  pool->set_channels(pm.ic);
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  pool->set_img_size(pm.iw);
  pool->set_img_size_y(pm.ih);
  pool->set_output_x(pm.ow);
  pool->set_output_y(pm.oh);
  pool->set_size_x(pm.fw);
  pool->set_size_y(pm.fh);
  pool->set_padding(pm.pw);
  pool->set_padding_y(pm.ph);
  pool->set_stride(pm.sw);
  pool->set_stride_y(pm.sh);

  int oh = outputSize(pm.ih, pm.fh, pm.ph, pm.sh, false);
  int ow = outputSize(pm.iw, pm.fw, pm.pw, pm.sw, false);
  CHECK_EQ(ow, pm.ow) << "output size check failed";
  CHECK_EQ(oh, pm.oh) << "output size check failed";
189
}
190

191 192 193 194 195
void testPoolLayer(const testPoolDesc& pm) {
  TestConfig dnnConfig;
  getMKLDNNPoolConfig(dnnConfig, pm);
  LayerInputConfig* input = dnnConfig.layerConfig.mutable_inputs(0);
  PoolConfig* pool = input->mutable_pool_conf();
196 197
  for (auto type : {"max-projection", "avg-projection"}) {
    pool->set_pool_type(type);
198
    RUN_MKLDNN_TEST_LAYER(dnnConfig, "pool", pm)
199 200 201
  }
}

202
TEST(MKLDNNLayer, PoolLayer) {
203
  /* bs, ch, ih, iw, oh, ow, fh, fw, ph, pw, sh, sw */
204 205 206 207 208 209 210
  testPoolLayer({2, 1, 4, 4, 2, 2, 3, 3, 0, 0, 2, 2});
  testPoolLayer({10, 8, 16, 16, 8, 8, 2, 2, 0, 0, 2, 2});
  testPoolLayer({4, 2, 5, 5, 3, 3, 3, 3, 1, 1, 2, 2});
  testPoolLayer({8, 16, 56, 56, 28, 28, 3, 3, 0, 0, 2, 2});
  testPoolLayer({8, 16, 14, 14, 7, 7, 3, 3, 0, 0, 2, 2});
  testPoolLayer({4, 16, 7, 7, 1, 1, 7, 7, 0, 0, 1, 1});
  testPoolLayer({4, 2, 5, 5, 3, 3, 5, 5, 1, 1, 1, 1});
211
  testPoolLayer({2, 8, 56, 56, 29, 29, 3, 3, 1, 1, 2, 2});
212 213
}

214
struct testActDesc {
215
  int bs, ic, ih, iw;
216 217 218 219 220
};

static void getAddtoConfig(TestConfig& cfg, const testActDesc& pm) {
  cfg.biasSize = 0;
  cfg.layerConfig.set_type("addto");
T
tensor-tang 已提交
221
  size_t layerSize = pm.ic * pm.ih * pm.iw;
222 223
  cfg.layerConfig.set_size(layerSize);
  cfg.inputDefs.push_back({INPUT_DATA, "layer_0", layerSize, 0});
224 225 226
  cfg.layerConfig.add_inputs();
}

T
tensor-tang 已提交
227
void testActivation(std::string actType, const testActDesc& pm) {
T
tensor-tang 已提交
228 229
  // TODO(TJ): remove me when paddle support elu activation
  if (actType == "mkldnn_elu") {
230 231 232
    return;
  }
  const std::string compareTypes[] = {actType, actType.erase(0, 7)};
233 234 235 236 237
  TestConfig cfg;
  getAddtoConfig(cfg, pm);
  TestConfig ref = cfg;
  cfg.layerConfig.set_active_type(compareTypes[0]);
  ref.layerConfig.set_active_type(compareTypes[1]);
238
  RUN_MKLDNN_TEST(cfg, ref, pm)
239 240 241 242 243
}

TEST(MKLDNNActivation, Activations) {
  auto types = MKLDNNActivation::getAllRegisteredTypes();
  for (auto type : types) {
244
    /* bs, c, h, w*/
245
    testActivation(type, {16, 64, 32, 32});
T
tensor-tang 已提交
246
    testActivation(type, {2, 8, 1, 1});
247 248 249
  }
}

T
tensor-tang 已提交
250 251 252 253 254 255 256 257 258 259 260
// TODO(TJ): add branch test

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  FLAGS_use_gpu = false;
  FLAGS_use_mkldnn = true;
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}