mnist.py 5.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
import numpy

Q
qiaolongfei 已提交
5
BATCH_SIZE = 2
Q
qiaolongfei 已提交
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

scope = core.Scope()
place = core.CPUPlace()
dev_ctx = core.DeviceContext.create(place)

# init_net = core.Net.create()
forward_network = core.Net.create()

# should be init after forward_op is constructed
# backward_net = core.Operator.backward(forward_net, set())
backward_net = None
optimize_net = core.Net.create()


def atom_id():
    id = 0
    while True:
        yield id
        id += 1


uniq_id = atom_id().next


def data_layer(name, dims):
    var = scope.new_var(name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)  # 1 is batch size holder.
    return name


def feed_data(name, data):
Q
qiaolongfei 已提交
38
    assert isinstance(data, numpy.ndarray)
Q
qiaolongfei 已提交
39 40
    tensor = scope.find_var(name).get_tensor()
    tensor.set_dims(data.shape)
Q
qiaolongfei 已提交
41 42 43 44 45 46
    if data.dtype == numpy.dtype('int32'):
        tensor.alloc_float(place)
    elif data.dtype == numpy.dtype('float32'):
        tensor.alloc_int(place)
    else:
        raise ValueError("data type not supported")
Q
qiaolongfei 已提交
47 48 49 50 51 52 53 54 55 56
    tensor.set(data, place)


def grad_var_name(var_name):
    return var_name + "@GRAD"


def sgd_optimizer(net, param_name, learning_rate=0.01):
    grad_name = grad_var_name(param_name)
    optimize_op = Operator(
Q
qiaolongfei 已提交
57 58 59 60 61
        "sgd",
        param=param_name,
        grad=grad_name,
        param_out=param_name,
        learning_rate=learning_rate)
Q
qiaolongfei 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    net.add_op(optimize_op)


# should use operator and add these to the init_network
def init_param(param_name, dims):
    print param_name
    var = scope.new_var(param_name)
    tensor = var.get_tensor()
    tensor.set_dims(dims)
    data = numpy.random.uniform(
        low=0.0, high=1.0, size=tensor.shape()).astype("float32")
    tensor.set(data, place)


# fc_layer
Q
qiaolongfei 已提交
77
def fc_layer(net, input, size, act="softmax", bias=True, param=None, name=None):
Q
qiaolongfei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    Add a fc layer to net

    :param input: input variable name.
    :type input: str
    :param size: fully connected layer size.
    :param act: activation name
    :param param: parameter attribute, used for initialize parameters.
    :param bias: bias attribute. False will not have a bias.
    :param name: the name of fc layer. If not set, model will generate a
    readable name
    :return: output variable name.
    """
    if name is None:
        name = 'fc_%d' % uniq_id()
    if not isinstance(name, str):
        raise ValueError("name should be string")

    input_dims = scope.find_var(input).get_tensor().get_dims()

    w_name = param or name + ".w"
    init_param(param_name=w_name, dims=[input_dims[1], size])
    sgd_optimizer(net=optimize_net, param_name=w_name, learning_rate=0.01)

    pre_activation = name + ".mul.out"
    scope.new_var(pre_activation)
    mul_op = Operator("mul", X=input, Y=w_name, Out=pre_activation)
    net.add_op(mul_op)

    # create bias variable if needed
    if bias:
        bias_name = name + ".b"
        init_param(param_name=bias_name, dims=[size])
        sgd_optimizer(
            net=optimize_net, param_name=bias_name, learning_rate=0.01)
        bias_out = name + ".rowwise_add.out"
        scope.new_var(bias_out)
        rowwise_add_op = Operator(
            "rowwise_add", X=pre_activation, b=bias_name, Out=bias_out)
        net.add_op(rowwise_add_op)
        pre_activation = bias_out

    activation_op = Operator(act, X=pre_activation, Y=name)
    net.add_op(activation_op)
    scope.new_var(name)
    net.infer_shape(scope)
    return name


def cross_entropy_layer(net, input, label):
    cost_name = 'cross_entropy_%d' % uniq_id()
    cross_entropy_op = Operator(
        "onehot_cross_entropy", X=input, label=label, Y=cost_name)
    net.add_op(cross_entropy_op)
    scope.new_var(cost_name)
    net.infer_shape(scope)
    return cost_name


Q
qiaolongfei 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def get_backward_net(forward_net):
    net = core.Operator.backward(forward_net, set())
    for input in net.inputs()["all"]:
        var = scope.new_var(input)
        var.get_tensor()
    for output in net.outputs()["all"]:
        var = scope.new_var(output)
        var.get_tensor()
    return net


def print_inputs_outputs(op):
    print("===============" + op.type() + "==============")
    print("***inputs:***")
    for input in op.inputs()["all"]:
        print input, scope.find_var(input).get_tensor().get_dims()
    print("***outputs:***")
    for output in op.outputs()["all"]:
        print output, scope.find_var(output).get_tensor().get_dims()
    print("")
    print("")


Q
qiaolongfei 已提交
160 161 162 163 164 165
images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
label = data_layer(name='label', dims=[BATCH_SIZE])
fc = fc_layer(net=forward_network, input=images, size=10, act="softmax")
cost = cross_entropy_layer(net=forward_network, input=fc, label=label)
forward_network.complete_add_op(True)
print(forward_network)
Q
qiaolongfei 已提交
166
backward_net = get_backward_net(forward_network)
Q
qiaolongfei 已提交
167
print(backward_net)
Q
qiaolongfei 已提交
168 169
optimize_net.complete_add_op(True)
print(optimize_net)
Q
qiaolongfei 已提交
170 171 172

PASS_NUM = 10
for pass_id in range(PASS_NUM):
Q
qiaolongfei 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    print("===========forward==========")
    feed_data("pixel", numpy.random.random((BATCH_SIZE, 784)).astype('float32'))
    feed_data("label", numpy.ones(BATCH_SIZE).astype("int32"))
    forward_network.infer_shape(scope)
    print_inputs_outputs(forward_network)

    print(numpy.array(scope.find_var("label").get_tensor()))
    forward_network.run(scope, dev_ctx)
    # print(numpy.array(scope.find_var("fc_0").get_tensor()))

    print("===========backward==========")
    cost_data = numpy.array(scope.find_var("cross_entropy_1").get_tensor())
    cost_grad = scope.find_var(grad_var_name("cross_entropy_1")).get_tensor()
    cost_grad.set_dims(cost_data.shape)
    cost_grad.alloc_float(place)
    cost_grad.set(cost_data, place)

    backward_net.infer_shape(scope)
    print_inputs_outputs(backward_net)

    backward_net.run(scope, dev_ctx)

    print("===========optimize_net==========")
    print_inputs_outputs(optimize_net)
    optimize_net.run(scope, dev_ctx)