nets.py 9.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import pdb
15
import layers
F
fengjiayi 已提交
16

17 18 19
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
20
    "glu",
21
    "scaled_dot_product_attention",
22
]
D
dzhwinter 已提交
23

F
fengjiayi 已提交
24 25 26

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
27
                         filter_size,
F
fengjiayi 已提交
28 29 30
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
31
                         param_attr=None,
C
chengduoZH 已提交
32
                         pool_type='max',
C
chengduoZH 已提交
33
                         use_cudnn=True):
F
fengjiayi 已提交
34 35 36 37
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
38
        param_attr=param_attr,
C
chengduoZH 已提交
39 40
        act=act,
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
41 42 43 44

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
45
        pool_type=pool_type,
C
chengduoZH 已提交
46 47
        pool_stride=pool_stride,
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
48 49 50 51 52 53 54 55 56
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
57
                   param_attr=None,
Q
Qiao Longfei 已提交
58 59 60
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
C
chengduoZH 已提交
61
                   pool_type=None,
C
chengduoZH 已提交
62
                   use_cudnn=True):
Q
Qiao Longfei 已提交
63 64 65 66 67
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
68
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76 77

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
78
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
92
            param_attr=param_attr[i],
C
chengduoZH 已提交
93
            act=local_conv_act,
C
chengduoZH 已提交
94
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
95 96

        if conv_with_batchnorm[i]:
97
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
98 99
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
100
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
101 102 103 104 105

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
106
        pool_stride=pool_stride,
C
chengduoZH 已提交
107
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
108
    return pool_out
D
dzhwinter 已提交
109 110 111 112 113


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
114
                       param_attr=None,
115
                       act="sigmoid",
116
                       pool_type="max"):
D
dzhwinter 已提交
117 118 119 120
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
121
        param_attr=param_attr,
122
        act=act)
D
dzhwinter 已提交
123

124
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
125
    return pool_out
G
guosheng 已提交
126 127 128 129


def glu(input, dim=-1):
    """
Y
ying 已提交
130 131 132
    The gated linear unit composed by split, sigmoid activation and elementwise
    multiplication. Specifically, Split the input into two equal sized parts
    :math:`a` and :math:`b` along the given dimension and then compute as
G
guosheng 已提交
133
    following:
G
guosheng 已提交
134 135 136 137 138

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
139
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
140
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
141

G
guosheng 已提交
142 143
    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
ying 已提交
144
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
145 146 147 148 149 150 151 152 153
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        Variable: The Tensor variable with half the size of input.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 6, 9]
154
            fluid.nets.glu(input=x, dim=1)  # shape of output: [3, 3, 9]
G
guosheng 已提交
155 156 157
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
158 159
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
160
    return out
161 162


Y
ying 已提交
163 164 165 166 167
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
                                 num_heads,
                                 dropout_rate=0.):
168 169 170
    """
    The dot-product attention.

Y
ying 已提交
171 172 173 174 175 176 177
    Attention mechanism can be seen as mapping a query and a set of
    key-value pairs to an output. The output is computed as a weighted sum
    of the values, where the weight assigned to each value is computed by a
    compatibility function (dot-product here) of the query with the
    corresponding key.

    The dot-product attention can be implemented through (batch) matrix
178 179 180 181
    multipication as follows:

        .. math::

182
            Attention(Q, K, V)= softmax(QK^\mathrm{T})V
183

Y
ying 已提交
184
    Refer to `Attention Is All You Need
185 186
    <https://arxiv.org/pdf/1706.03762.pdf>`_.

Y
ying 已提交
187
    Note that batch data containing sequences with different lengths is not
188
    supported by this because of the (batch) matrix multipication.
Y
ying 已提交
189

190
    Args:
Y
ying 已提交
191 192
        query (Variable): The input variable which is a Tensor or
                          LoDTensor.
193
        key (Variable): The input variable which is a Tensor or LoDTensor.
Y
ying 已提交
194 195
        value (Variable): The input variable which is a Tensor or
                          LoDTensor.
196 197

    Returns:
198 199
        Variable: The context Tensor computed by multi-head scaled dot product
                  attention.
200 201 202 203

    Examples:
        .. code-block:: python

Y
ying 已提交
204 205
            # Suppose q, k, v are tensor variables with the following
            # shape: q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
206 207 208 209
            out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
            out.shape  # [3, 5, 10]
            attn_scores.shape  # [3, 5, 6]
    """
Y
ying 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs quries, keys and values should all be 3-D tensors.")

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
            "The hidden size of queries and keys should be the same.")
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
            "The max sequence length in query batch and in key batch "
            "should be the same.")
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

    def __split_heads(x, num_heads):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions.

        Args:
          x(Tensor): a 3-D input Tensor.
          num_heads(int): The number of heads.

        Returns:
          a Tensor with shape [..., n, m/n]
        """
242 243
        if num_heads == 1: return x

Y
ying 已提交
244
        hidden_size = x.shape[-1]
245 246 247
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
248
        reshaped = layers.reshape(
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
        # permuate the original dimensions into:
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        if len(x.shape) == 3: return
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(
            x, perm=[x.shape[0], x.shape[2], x.shape[1], x.shape[3]])
        return layers.reshape(x=layers.reshape(
            x=trans_x,
            shape=[trans_x.shape[0], trans_x[1], trans_x[2] * trans_x[3]]))

    q = __split_heads(queries, num_heads)
Y
ying 已提交
267 268 269 270
    k = __split_heads(keys, num_heads)
    v = __split_heads(values, num_heads)

    key_dim_per_head = keys.shape[-1] // num_heads
271 272
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
    product = layers.matmul(x=k, y=scaled_q, transpose_y=True)
Y
ying 已提交
273

274 275
    attn_scores = layers.reshape(
        x=layers.reshape(
Y
ying 已提交
276
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
277
        shape=product.shape)
278 279 280
    ctx_multiheads = layers.matmul(attn_scores, values)
    context = __combine_heads(ctx_multiheads)
    return context