scatter_op.h 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/scatter.h"
Z
zchen0211 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

Z
zchen0211 已提交
26
template <typename T>
Y
Yu Yang 已提交
27
class ScatterOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
28 29
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
Z
zchen0211 已提交
30 31
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
D
dzhwinter 已提交
32 33
    auto *X = ctx.Input<Tensor>("X");
    auto *Ids = ctx.Input<Tensor>("Ids");
Z
zchen0211 已提交
34 35
    auto *Updates = ctx.Input<Tensor>("Updates");
    auto *Out = ctx.Output<Tensor>("Out");
36
    double overwrite = ctx.Attr<bool>("overwrite");
Z
zchen0211 已提交
37

38
    // In place output: Out = X, Out[Ids] = Updates
39
    framework::TensorCopySync(*X, ctx.GetPlace(), Out);
40
    // Apply ScatterUpdate: Out[index] = Updates[:]
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    const auto &index_type = Ids->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
    PADDLE_ENFORCE(
        index_type_match,
        "Index holds the wrong type, it holds %s, but desires to be %s or %s",
        paddle::framework::DataTypeToString(index_type),
        paddle::framework::DataTypeToString(framework::proto::VarType::INT32),
        paddle::framework::DataTypeToString(framework::proto::VarType::INT64));
    if (overwrite) {
      if (index_type == framework::proto::VarType::INT32) {
        ScatterAssign<T, int32_t>(ctx.device_context(), *Updates, *Ids, Out);
      } else {
        ScatterAssign<T, int64_t>(ctx.device_context(), *Updates, *Ids, Out);
      }
    } else {
      if (index_type == framework::proto::VarType::INT32) {
        ScatterAssignAdd<T, int32_t>(ctx, *Updates, *Ids, Out);
      } else {
        ScatterAssignAdd<T, int64_t>(ctx, *Updates, *Ids, Out);
      }
    }
Z
zchen0211 已提交
63 64 65
  }
};

Z
zchen0211 已提交
66
template <typename T>
Y
Yu Yang 已提交
67
class ScatterGradientOpKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
68 69
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
Z
zchen0211 已提交
70 71
    PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
                   "This kernel only runs on CPU.");
D
dzhwinter 已提交
72
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
Z
zchen0211 已提交
73
    auto *dUpdates = ctx.Output<Tensor>(framework::GradVarName("Updates"));
D
dzhwinter 已提交
74
    auto *Ids = ctx.Input<Tensor>("Ids");
Z
zchen0211 已提交
75
    auto *dOut = ctx.Input<Tensor>(framework::GradVarName("Out"));
Z
zchen0211 已提交
76

D
dzhwinter 已提交
77
    // In place gradient: dX = dO
78
    framework::TensorCopySync(*dOut, ctx.GetPlace(), dX);
Z
zchen0211 已提交
79
    dUpdates->mutable_data<T>(ctx.GetPlace());
80
    // Gradient by Gather: dUpdates = dO[Ids]
D
dzhwinter 已提交
81
    CPUGather<T>(ctx.device_context(), *dOut, *Ids, dUpdates);
Z
zchen0211 已提交
82 83 84 85 86
  }
};

}  // namespace operators
}  // namespace paddle