test_hash_op.py 4.7 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
minqiyang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
M
minqiyang 已提交
19 20


21
class TestHashOp(OpTest):
M
minqiyang 已提交
22 23 24 25
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': (self.in_seq, self.lod)}
26
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
M
minqiyang 已提交
27 28 29
        self.outputs = {'Out': (self.out_seq, self.lod)}

    def init_test_case(self):
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
        self.lod = [[2, 6]]
        self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]],
                        [[3481], [7475]], [[4372], [9456]], [[4372], [9456]],
                        [[6897], [3218]], [[9038], [7951]]]
        self.out_seq = np.array(self.out_seq)

    def test_check_output(self):
        self.check_output()


class TestHashNotLoDOp(TestHashOp):
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
        self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]],
                        [[3481], [7475]], [[4372], [9456]], [[4372], [9456]],
                        [[6897], [3218]], [[9038], [7951]]]
M
minqiyang 已提交
56
        self.out_seq = np.array(self.out_seq)
M
minqiyang 已提交
57 58 59 60 61

    def test_check_output(self):
        self.check_output()


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class TestHashOp2(TestHashOp):
    """
    Case:
    int64 type input
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([1, 2**32 + 1]).reshape((2, 1)).astype("int64")
        self.out_seq = np.array([1269, 9609, 3868, 7268]).reshape((2, 2, 1))

    def test_check_output(self):
        self.check_output()


class TestHashOp3(TestHashOp):
    """
    Case:
    int64 type input
    int64 type mod_by attr
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 2**32}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([10, 5]).reshape((2, 1)).astype("int64")
        self.out_seq = np.array(
            [1204014882, 393011615, 3586283837, 2814821595]).reshape((2, 2, 1))

    def test_check_output(self):
        self.check_output()


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
class TestHashOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_data = np.random.randint(0, 10, (8, 1)).astype("int32")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.hash(input=input_data, hash_size=2**32)

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                # dtype must be int32, int64.
                x2 = fluid.layers.data(
                    name='x2', shape=[1], dtype="float32", lod_level=1)
                fluid.layers.hash(input=x2, hash_size=2**32)

            self.assertRaises(TypeError, test_type)

            def test_hash_size_type():
                # hash_size dtype must be int32, int64.
                x3 = fluid.layers.data(
                    name='x3', shape=[1], dtype="int32", lod_level=1)
                fluid.layers.hash(input=x3, hash_size=1024.5)

            self.assertRaises(TypeError, test_hash_size_type)

            def test_num_hash_type():
                # num_hash dtype must be int32, int64.
                x4 = fluid.layers.data(
                    name='x4', shape=[1], dtype="int32", lod_level=1)
                fluid.layers.hash(input=x4, hash_size=2**32, num_hash=2.5)

            self.assertRaises(TypeError, test_num_hash_type)


M
minqiyang 已提交
142 143
if __name__ == "__main__":
    unittest.main()