math_kernel.h 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/dense_tensor.h"
19 20
#include "paddle/pten/infermeta/binary.h"
#include "paddle/pten/infermeta/unary.h"
21
#include "paddle/pten/kernels/empty_kernel.h"
22 23 24 25

namespace pten {

template <typename T, typename Context>
26 27 28 29 30 31
void MeanKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& dims,
                bool keep_dim,
                bool reduce_all,
                DenseTensor* out);
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

template <typename T, typename Context>
void AddKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& y,
               int axis,
               DenseTensor* out);

template <typename T, typename Context>
void SubtractKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out);

template <typename T, typename Context>
void DivideKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  int axis,
                  DenseTensor* out);

template <typename T, typename Context>
void MultiplyKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    int axis,
                    DenseTensor* out);

template <typename T, typename Context>
62 63 64 65 66 67 68
void SumKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               bool reduce_all,
               DataType out_dtype,
               DenseTensor* out);
69

C
Chen Weihang 已提交
70 71
template <typename T, typename Context>
DenseTensor Add(const Context& dev_ctx,
72 73 74 75 76 77 78 79
                const DenseTensor& x,
                const DenseTensor& y,
                int axis) {
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
C
Chen Weihang 已提交
80
  AddKernel<T, Context>(dev_ctx, x, y, axis, &dense_out);
81 82 83
  return dense_out;
}

C
Chen Weihang 已提交
84 85
template <typename T, typename Context>
DenseTensor Subtract(const Context& dev_ctx,
86 87 88 89 90 91 92 93
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
C
Chen Weihang 已提交
94
  SubtractKernel<T, Context>(dev_ctx, x, y, axis, &dense_out);
95 96 97
  return dense_out;
}

C
Chen Weihang 已提交
98 99
template <typename T, typename Context>
DenseTensor Divide(const Context& dev_ctx,
100 101 102 103 104 105 106 107
                   const DenseTensor& x,
                   const DenseTensor& y,
                   int axis) {
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
C
Chen Weihang 已提交
108
  DivideKernel<T, Context>(dev_ctx, x, y, axis, &dense_out);
109 110 111
  return dense_out;
}

C
Chen Weihang 已提交
112 113
template <typename T, typename Context>
DenseTensor Multiply(const Context& dev_ctx,
114 115 116 117 118 119 120 121
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis) {
  auto out_meta = ElementwiseInferMeta(x.meta(), y.meta(), axis);
  pten::DenseTensor dense_out(
      pten::make_intrusive<paddle::experimental::SharedStorage>(
          dev_ctx.GetPlace()),
      std::move(out_meta));
C
Chen Weihang 已提交
122
  MultiplyKernel<T, Context>(dev_ctx, x, y, axis, &dense_out);
123 124 125
  return dense_out;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
template <typename T, typename Context>
DenseTensor Mean(const Context& dev_ctx,
                 const DenseTensor& x,
                 const std::vector<int64_t>& axis,
                 bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim);
  auto dense_out = pten::Empty<T, Context>(dev_ctx, std::move(out_meta));
  bool reduce_all = false;
  MeanKernel<T, Context>(dev_ctx, x, axis, keep_dim, reduce_all, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Sum(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& axis,
                DataType dtype,
                bool keep_dim) {
  auto out_meta = ReduceInferMeta(x.meta(), axis, keep_dim, dtype);
  auto dense_out = pten::Empty<T, Context>(dev_ctx, std::move(out_meta));

  // The real value of reduce_all will be get in kernel
  // so use default value(false) is OK.
  bool reduce_all = false;

  SumKernel<T, Context>(
      dev_ctx, x, axis, keep_dim, reduce_all, out_meta.dtype, &dense_out);
  return dense_out;
}

156
}  // namespace pten