node.py 7.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import ps_pb2 as pslib


class Server(object):
    """
        A Server basic class.
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
        self.server_ = pslib.ServerParameter()
        self.server_.downpour_server_param.service_param.start_server_port = 0
        self.server_.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self.server_.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self.server_.downpour_server_param.service_param.service_class = "DownpourPsService"
        self.server_.downpour_server_param.service_param.start_server_port = 0
        self.server_.downpour_server_param.service_param.server_thread_num = 12

    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
        table = self.server_.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
        table.table_class = "DownpourSparseTable"
        table.type = pslib.PS_SPARSE_TABLE
        table.accessor.accessor_class = "DownpourFeatureValueAccessor"
        table.accessor.sparse_sgd_param.learning_rate = learning_rate
        table.accessor.sparse_sgd_param.initial_g2sum = 3
        table.accessor.sparse_sgd_param.initial_range = 1e-4
        table.accessor.sparse_sgd_param.weight_bounds.extend([-10, 10])

        table.accessor.embedx_dim = 8
        table.accessor.embedx_threshold = 5
        table.accessor.fea_dim = 11
        table.accessor.downpour_accessor_param.nonclk_coeff = 0.1
        table.accessor.downpour_accessor_param.click_coeff = 2
        table.accessor.downpour_accessor_param.base_threshold = 0.2
        table.accessor.downpour_accessor_param.delta_threshold = 0.15
        table.accessor.downpour_accessor_param.delta_keep_days = 31
        table.accessor.downpour_accessor_param.show_click_decay_rate = 0.999
        table.accessor.downpour_accessor_param.delete_threshold = 0.8

    def add_dense_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
        table = self.server_.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
        table.table_class = "DownpourDenseTable"
        table.type = pslib.PS_DENSE_TABLE
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
        table.accessor.dense_sgd_param.name = "adam"
        table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
        table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
        table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
        table.accessor.dense_sgd_param.adam.ada_epsilon = 1e-8
        table.accessor.dense_sgd_param.adam.mom_decay_rate = 0.99
        table.accessor.dense_sgd_param.naive.learning_rate = 0.0002
        fea_dim = 0
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
        table.accessor.fea_dim = fea_dim

    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
        table = self.server_.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
        table.table_class = "DownpourDenseTable"
        table.type = pslib.PS_DENSE_TABLE
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
        table.accessor.dense_sgd_param.name = "summary"
        table.accessor.dense_sgd_param.summary.summary_decay_rate = 0.999999
        fea_dim = 0
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
        table.accessor.fea_dim = fea_dim

    def get_desc(self):
        """
        Return downpour server program_desc
        """
        return self.server_


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
        self.worker_ = pslib.DownpourTrainerParameter()

    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
        table = self.worker_.sparse_table.add()
        table.table_id = table_id
        table.slot_key.extend([var.name for var in slot_key_vars])
        table.slot_value.extend([var.name for var in slot_value_vars])
        table.slot_gradient.extend(
            [var.name + "@GRAD" for var in slot_value_vars])

    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
        table = self.worker_.dense_table.add()
        table.table_id = table_id
        table.dense_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [p.name for p in param_vars]))
        table.dense_gradient_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [g.name for g in grad_vars]))

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
        return self.worker_