softmax_with_cross_entropy_op.h 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
C
caoying03 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

29
template <typename T>
Y
Yu Yang 已提交
30
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
31
 public:
C
caoying03 已提交
32
  void Compute(const framework::ExecutionContext& context) const override {
C
caoying03 已提交
33
    PADDLE_ENFORCE(platform::is_cpu_place(context.GetPlace()),
34
                   "This kernel only runs on CPU.");
C
caoying03 已提交
35
    const Tensor* logits = context.Input<Tensor>("Logits");
36
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
37
    Tensor* softmax = context.Output<Tensor>("Softmax");
38
    Tensor* loss = context.Output<Tensor>("Loss");
C
caoying03 已提交
39

40 41
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
42

D
dengkaipeng 已提交
43
    int axis_dim = logits->dims()[logits->dims().size() - 1];
D
dengkaipeng 已提交
44

Q
QI JUN 已提交
45 46
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
47
    math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
D
dengkaipeng 已提交
48
        dev_ctx, axis_dim, logits, softmax);
Q
QI JUN 已提交
49
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
50 51
        dev_ctx, loss, softmax, labels, context.Attr<bool>("soft_label"),
        context.Attr<int>("ignore_index"));
C
caoying03 已提交
52
  }
C
caoying03 已提交
53 54
};

55
template <typename T>
Y
Yu Yang 已提交
56
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
57
 public:
58
  void Compute(const framework::ExecutionContext& context) const override {
59 60 61
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
62 63
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
64
    logit_grad->ShareDataWith(*context.Input<Tensor>("Softmax"));
65 66

    const int class_num = logit_grad->dims()[1];
C
caoying03 已提交
67 68
    auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
    auto logit_grad_mat = EigenMatrix<T>::From(*logit_grad);
Q
QI JUN 已提交
69 70
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
71
    if (context.Attr<bool>("soft_label")) {
72
      auto lbl_mat = EigenMatrix<T>::From(*labels);
Q
QI JUN 已提交
73
      logit_grad_mat.device(place) =
C
caoying03 已提交
74 75
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num)) *
          (logit_grad_mat - lbl_mat);
76
    } else {
Q
QI JUN 已提交
77
      logit_grad_mat.device(place) =
C
caoying03 已提交
78 79 80
          logit_grad_mat *
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, class_num));

81
      const int batch_size = logit_grad->dims()[0];
C
caoying03 已提交
82
      const int64_t* label_data = labels->data<int64_t>();
83
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
84
      const T* out_grad_data = out_grad->data<T>();
85
      for (int i = 0; i < batch_size; ++i) {
C
caoying03 已提交
86
        logit_grad_data[i * class_num + label_data[i]] -= out_grad_data[i];
87
      }
88 89
    }
  }
C
caoying03 已提交
90 91 92 93
};

}  // namespace operators
}  // namespace paddle