communicator.h 6.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <deque>
#include <memory>
#include <string>
#include <vector>

Q
Qiao Longfei 已提交
22 23
#include <ThreadPool.h>

Q
Qiao Longfei 已提交
24 25 26
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/distributed/rpc_common.h"
Q
Qiao Longfei 已提交
27 28
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
48 49 50 51 52 53 54
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
55 56 57 58
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
59 60 61 62 63 64 65
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
66 67 68 69 70
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
71
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
72 73
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
74
    cv_.notify_one();
Q
Qiao Longfei 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
93
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
94 95
};

Q
Qiao Longfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
    VLOG(3) << "merge " << var_name << " LoDTensor " << dims;

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    math::scatter::MergeAdd<paddle::platform::CPUDeviceContext, float>
        merge_add;
    auto dev_ctx = paddle::platform::CPUDeviceContext();
    merge_add(dev_ctx, inputs, out_slr, false);
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
155 156
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
157 158
class Communicator {
 public:
Q
Qiao Longfei 已提交
159
  Communicator(const RpcCtxMap& send_varname_to_ctx,
Q
Qiao Longfei 已提交
160
               const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope);
Q
Qiao Longfei 已提交
161

Q
Qiao Longfei 已提交
162
  ~Communicator();
Q
Qiao Longfei 已提交
163 164 165 166 167 168 169

  void Start();

  // send grad
  void Send(const std::string& var_name, const framework::Scope& scope);

 private:
Q
Qiao Longfei 已提交
170 171
  // recv all parameter
  void RecvAll();
Q
Qiao Longfei 已提交
172 173 174
  void SendThread();
  void RecvThread();

Q
Qiao Longfei 已提交
175
  bool running_ = false;
Q
Qiao Longfei 已提交
176 177 178
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
179 180
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
Q
Qiao Longfei 已提交
181 182 183 184
  std::unique_ptr<std::thread> send_thread_;
  std::unique_ptr<std::thread> recv_thread_;
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
185 186
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
Q
Qiao Longfei 已提交
187 188 189 190 191 192 193 194

  // the following code is for initialize the commnunicator
 public:
  static void Init(const RpcCtxMap& send_varname_to_ctx,
                   const RpcCtxMap& recv_varname_to_ctx, Scope* recv_scope) {
    InitImpl(send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
  }

Q
can run  
Qiao Longfei 已提交
195
  static Communicator* GetInstance();
Q
Qiao Longfei 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

 private:
  // Init is called by GetInstance.
  static void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                       const RpcCtxMap& recv_varname_to_ctx,
                       Scope* recv_scope) {
    if (communicator_ == nullptr) {
      communicator_.reset(new Communicator(send_varname_to_ctx,
                                           recv_varname_to_ctx, recv_scope));
    }
  }

 private:
  static std::once_flag init_flag_;
  static std::unique_ptr<Communicator> communicator_;
Q
Qiao Longfei 已提交
211 212 213 214 215
};

}  // namespace distributed
}  // namespace operators
}  // namespace paddle