elementwise_grad.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_grad_base.h"
19
#include "paddle/phi/kernels/funcs/reduce_function.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

namespace phi {

/*
******************************
    Add Grad
******************************
*/

template <typename T>
static __global__ void SimpleElemwiseAddGradCUDAKernel(
    const T *__restrict__ dout, int size, int vec_size, T *dx, T *dy) {
  int tid = BLOCK_ID_X * BLOCK_NUM_X + THREAD_ID_X;
  int stride = GRID_NUM_X * BLOCK_NUM_X;
  int loop = size / vec_size;
  int remainder = size % vec_size;
  const float4 *dout_vec = reinterpret_cast<const float4 *>(dout);
  float4 *dx_vec = reinterpret_cast<float4 *>(dx);
  float4 *dy_vec = reinterpret_cast<float4 *>(dy);
  float4 tmp_loop;

  for (int i = tid; i < loop; i += stride) {
    tmp_loop = dout_vec[i];
    dx_vec[i] = tmp_loop;
    dy_vec[i] = tmp_loop;
  }

  if (tid == loop && remainder != 0) {
    T tmp_rem;
    while (remainder) {
      int idx = size - remainder;
      remainder--;
      tmp_rem = dout[idx];
      dx[idx] = tmp_rem;
      dy[idx] = tmp_rem;
    }
  }
}

template <typename T>
void DefaultElementwiseAddGrad(const GPUContext &ctx,
                               const DenseTensor &x,
                               const DenseTensor &y,
                               const DenseTensor &out,
                               const DenseTensor &dout,
                               DenseTensor *dx,
                               DenseTensor *dy,
                               int axis = -1) {
  auto *dout_data = dout.data<T>();

  // dx
  if (dx != nullptr) {
    auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout.dims()) {
      if (dx_data != dout_data) {
        phi::Copy(ctx, dout, ctx.GetPlace(), false, dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(dout)) {
        dx->clear();
        dx->mutable_data<T>(x.dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(x.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
87
      funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
88 89 90 91 92 93 94 95 96 97 98 99 100 101
          ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
    }
  }
  // dy
  if (dy != nullptr) {
    auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout.dims()) {
      if (dy_data != dout_data) {
        phi::Copy(ctx, dout, ctx.GetPlace(), false, dy);
      }
    } else {
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(y.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
102
      funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
          ctx, dout, dy, kps::IdentityFunctor<T>(), reduce_dims, stream);
    }
  }
}

template <typename T>
void ElementwiseAddGrad(const GPUContext &ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        const DenseTensor &out,
                        const DenseTensor &dout,
                        DenseTensor *dx,
                        DenseTensor *dy) {
  ctx.template Alloc<T>(dx);
  ctx.template Alloc<T>(dy);
  auto *dx_data = dx->data<T>();
  auto *dy_data = dy->data<T>();
  auto *dout_data = dout.data<T>();
  if (dx_data == dout_data && dy_data != dout_data) {
    VLOG(4) << "Special case when dx_data is the same as dout_data, "
               "only need copy dout to dy";
    phi::Copy(ctx, dout, ctx.GetPlace(), false, dy);
  } else if (dx_data != dout_data && dy_data == dout_data) {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "only need copy dout to dx";
    phi::Copy(ctx, dout, ctx.GetPlace(), false, dx);
  } else if (dx_data != dout_data && dy_data != dout_data) {
    auto size = x.numel();
    int vec_size = max(static_cast<int>(sizeof(float4) / sizeof(T)), 1);
    dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
    dim3 grid_size =
        dim3(((size + vec_size - 1) / vec_size + PREDEFINED_BLOCK_SIZE - 1) /
                 PREDEFINED_BLOCK_SIZE,
             1);
    SimpleElemwiseAddGradCUDAKernel<
        T><<<grid_size, block_size, 0, ctx.stream()>>>(
        dout.data<T>(),
        size,
        vec_size,
        dx->mutable_data<T>(ctx.GetPlace()),
        dy->mutable_data<T>(ctx.GetPlace()));
  } else {
    VLOG(4) << "Special case when dy_data is the same as dout_data, "
               "and dx_data is the same as dout_data, do not need "
               "any operator";
  }
}

/*
******************************
    Sub Grad
******************************
*/

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T *dout,
                                                       int64_t size,
                                                       T *dx,
                                                       T *dy) {
  int col = BLOCK_ID_X * BLOCK_NUM_X + THREAD_ID_X;

  while (col < size) {
    if (dx != nullptr) {
      dx[col] = dout[col];
    }
    dy[col] = -dout[col];
    col += BLOCK_NUM_X * GRID_NUM_X;
  }
}

template <typename T>
void default_elementwise_sub_grad(const GPUContext &ctx,
                                  const DenseTensor &x,
                                  const DenseTensor &y,
                                  const DenseTensor &out,
                                  const DenseTensor &dout,
                                  DenseTensor *dx,
                                  DenseTensor *dy,
                                  int axis = -1) {
  auto *dout_data = dout.data<T>();
  // dx
  if (dx != nullptr) {
    auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
    if (dx->dims() == dout.dims()) {
      if (dx_data != dout_data) {
        phi::Copy(ctx, dout, ctx.GetPlace(), false, dx);
      }
    } else {
      // For inplace strategy, dx will be stored in addr of dout, which makes
      // the result of dy wrong.
      if (dx->IsSharedBufferWith(dout)) {
        dx->clear();
        dx->mutable_data<T>(x.dims(), ctx.GetPlace());
      }
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(x.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
200
      funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::IdentityFunctor<T>>(
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
          ctx, dout, dx, kps::IdentityFunctor<T>(), reduce_dims, stream);
    }
  }
  // dy
  if (dy != nullptr) {
    auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
    if (dy->dims() == dout.dims()) {
      if (dy_data != dout_data) {
        dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
        auto size = dy->numel();
        dim3 grid_size =
            dim3((size + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1);
        SimpleElemwiseSubGradCUDAKernel<
            T><<<grid_size, block_size, 0, ctx.stream()>>>(
            dout.data<T>(), size, nullptr, dy->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      std::vector<int> reduce_dims =
          funcs::GetReduceDim(y.dims(), out.dims(), axis);
      gpuStream_t stream = ctx.stream();
221
      funcs::TensorReduceImpl<T, T, kps::AddFunctor, kps::InverseFunctor<T>>(
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
          ctx, dout, dy, kps::InverseFunctor<T>(), reduce_dims, stream);
    }
  }
}

template <typename T>
void elementwise_sub_grad(const GPUContext &ctx,
                          const DenseTensor &x,
                          const DenseTensor &y,
                          const DenseTensor &out,
                          const DenseTensor &dout,
                          DenseTensor *dx,
                          DenseTensor *dy) {
  dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1);
  auto size = x.numel();
  dim3 grid_size =
      dim3((size + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1);
  SimpleElemwiseSubGradCUDAKernel<
      T><<<grid_size, block_size, 0, ctx.stream()>>>(
      dout.data<T>(),
      size,
      dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}
}  // namespace phi