test_boxps.py 7.0 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
H
hutuxian 已提交
19
import shutil
H
hutuxian 已提交
20 21 22
import paddle.fluid.core as core
import unittest
from paddle.fluid.layers.nn import _pull_box_sparse
H
hutuxian 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
from paddle.fluid.transpiler import collective


class TestTranspile(unittest.TestCase):
    """  TestCases for BoxPS Preload """

    def get_transpile(self, mode, trainers="127.0.0.1:6174"):
        config = fluid.DistributeTranspilerConfig()
        config.mode = 'collective'
        config.collective_mode = mode
        t = fluid.DistributeTranspiler(config=config)
        return t

    def test_transpile(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        t = self.get_transpile("single_process_multi_thread")
        t.transpile(
            trainer_id=0,
            startup_program=startup_program,
            trainers="127.0.0.1:6174",
            program=main_program)
        t = self.get_transpile("grad_allreduce")
        try:
            t.transpile(
                trainer_id=0,
                startup_program=startup_program,
                trainers="127.0.0.1:6174",
                program=main_program)
        except ValueError as e:
            print(e)

    def test_single_trainers(self):
        transpiler = collective.GradAllReduce(0)
        try:
            transpiler.transpile(
                startup_program=fluid.Program(),
                main_program=fluid.Program(),
                rank=1,
                endpoints="127.0.0.1:6174",
                current_endpoint="127.0.0.1:6174",
                wait_port="6174")
        except ValueError as e:
            print(e)
        transpiler = collective.LocalSGD(0)
        try:
            transpiler.transpile(
                startup_program=fluid.Program(),
                main_program=fluid.Program(),
                rank=1,
                endpoints="127.0.0.1:6174",
                current_endpoint="127.0.0.1:6174",
                wait_port="6174")
        except ValueError as e:
            print(e)
H
hutuxian 已提交
78 79


H
hutuxian 已提交
80 81 82 83 84 85 86 87 88 89
class TestRunCmd(unittest.TestCase):
    """ TestCases for run_cmd"""

    def test_run_cmd(self):
        ret1 = int(core.run_cmd("ls; echo $?").strip().split('\n')[-1])
        ret2 = int(core.run_cmd("ls; echo $?", -1, -1).strip().split('\n')[-1])
        self.assertTrue(ret1 == 0)
        self.assertTrue(ret2 == 0)


H
hutuxian 已提交
90 91 92 93
class TestBoxPSPreload(unittest.TestCase):
    """  TestCases for BoxPS Preload """

    def test_boxps_cpu(self):
H
hutuxian 已提交
94 95
        self.run_boxps_preload(True, True)
        self.run_boxps_preload(True, False)
H
hutuxian 已提交
96 97

    def test_boxps_gpu(self):
H
hutuxian 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        self.run_boxps_preload(False, True)
        self.run_boxps_preload(False, False)

    def run_boxps_preload(self, is_cpu=True, random_with_lineid=False):
        program = fluid.Program()
        with fluid.program_guard(program):
            x = fluid.layers.data(
                name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(
                name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x, emb_y = _pull_box_sparse([x, y], size=2)
            emb_xp = _pull_box_sparse(x, size=2)
            concat = layers.concat([emb_x, emb_y], axis=1)
            fc = layers.fc(input=concat,
                           name="fc",
                           size=1,
                           num_flatten_dims=1,
                           bias_attr=False)
            loss = layers.reduce_mean(fc)
            layers.Print(loss)
            place = fluid.CPUPlace(
            ) if is_cpu or not core.is_compiled_with_cuda(
            ) else fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            batch_size = 100

            def binary_print(slot, fout):
                fout.write(str(len(slot)) + " ")
                for e in slot:
                    fout.write(str(e) + " ")

            batch1 = np.ones(
                (batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
            filelist = []
            place_str = "cpu" if is_cpu else "gpu"
            for i in range(2):
                filelist.append("test_hdfs_" + place_str + "_" + str(i))
            for f in filelist:
                with open(f, "w") as fout:
                    for ins in batch1:
                        for slot in ins:
                            binary_print(slot, fout)
                    fout.write("\n")

            def create_dataset():
                dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
                dataset.set_date("20190930")
                dataset.set_use_var([x, y])
                dataset.set_batch_size(2)
                dataset.set_thread(1)
                dataset.set_filelist(filelist)
                return dataset

            datasets = []
            datasets.append(create_dataset())
            datasets.append(create_dataset())
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
            optimizer = fluid.optimizer.PipelineOptimizer(
                optimizer,
                cut_list=[],
                place_list=[place],
                concurrency_list=[1],
                queue_size=1,
                sync_steps=-1)
            optimizer.minimize(loss)

            program._pipeline_opt[
                "dump_fields"] = ["fc.tmp_0", "fc.tmp_0@GRAD", "hehe"]
            program._pipeline_opt["dump_fields_path"] = "./dump_log/"
            program._pipeline_opt["dump_param"] = ["fc.w_0"]
            program._pipeline_opt["enable_random_dump"] = True
            program._pipeline_opt["dump_interval"] = 10
            program._pipeline_opt["random_with_lineid"] = random_with_lineid

            exe.run(fluid.default_startup_program())
            datasets[0].load_into_memory()
            datasets[0].begin_pass()
            datasets[1].preload_into_memory()
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=datasets[0],
                print_period=1)
            datasets[0].end_pass(True)
            datasets[1].wait_preload_done()
            datasets[1].begin_pass()
            exe.train_from_dataset(
                program=fluid.default_main_program(),
                dataset=datasets[1],
                print_period=1,
                debug=True)
            datasets[1].end_pass(False)
            for f in filelist:
                os.remove(f)
            if os.path.isdir("dump_log"):
                shutil.rmtree("dump_log")
H
hutuxian 已提交
193 194 195 196


if __name__ == '__main__':
    unittest.main()