rnn_memory_helper_op.cc 5.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yang Yang(Tony) 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {
class RNNMemoryHelperOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
27 28 29 30

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    auto mem_var_name = Input("X");
    auto *mem_var = scope.FindVar(mem_var_name);
    PADDLE_ENFORCE(mem_var != nullptr,
                   "Cannot find mem_var in scope, mem_var_name is %s",
                   mem_var_name);

    auto out_name = this->Output("Out");
    auto *out_var = scope.FindVar(out_name);
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot find out_var in scope, out_var_name is %s",
                   out_name);

    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
    auto &mem_tensor = mem_var->Get<framework::LoDTensor>();
    out_tensor->ShareDataWith(mem_tensor);
    out_tensor->set_lod(mem_tensor.lod());
  }
};

class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
  }
};

class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override {
Y
Yang Yang(Tony) 已提交
63 64
    AddInput("X", "");
    AddOutput("Out", "");
F
fengjiayi 已提交
65
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
66 67
                 "(int, default 5 (FP32)) "
                 "Output data type")
68
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
69 70 71 72 73 74 75 76 77 78 79
    AddComment("");
  }
};

class RNNMemoryHelperGradOp : public framework::OperatorBase {
 public:
  RNNMemoryHelperGradOp(const std::string &type,
                        const framework::VariableNameMap &inputs,
                        const framework::VariableNameMap &outputs,
                        const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
80 81 82 83

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    auto out_grad_var_name = Input(framework::GradVarName("Out"));
    auto *out_grad_var = scope.FindVar(out_grad_var_name);

    auto in_grad_var_name = Output(framework::GradVarName("X"));
    auto *in_grad_var = scope.FindVar(in_grad_var_name);
    PADDLE_ENFORCE(in_grad_var != nullptr,
                   "Cannot find in_grad_var in scope, name is %s",
                   in_grad_var_name);

    if (out_grad_var == nullptr) {
      VLOG(5) << "Using fill constant 0 as starting gradient";
      auto in_var_name = Input("X");
      auto *in_var = scope.FindVar(in_var_name);
      auto &in_var_tensor = in_var->Get<framework::LoDTensor>();

      framework::AttributeMap attrs;
F
fengjiayi 已提交
100
      attrs["dtype"] = framework::ToDataType(in_var_tensor.type());
Y
Yang Yang(Tony) 已提交
101 102 103 104 105
      attrs["shape"] = framework::vectorize2int(in_var_tensor.dims());
      attrs["value"] = 0.0f;

      auto zero_op = framework::OpRegistry::CreateOp(
          "fill_constant", {}, {{"Out", {in_grad_var_name}}}, attrs);
D
dzhwinter 已提交
106
      zero_op->Run(scope, dev_place);
Y
Yang Yang(Tony) 已提交
107 108 109 110 111 112 113 114 115 116 117 118
    } else {
      auto &out_grad_tensor = out_grad_var->Get<framework::LoDTensor>();
      auto *in_grad_tensor = in_grad_var->GetMutable<framework::LoDTensor>();
      in_grad_tensor->ShareDataWith(out_grad_tensor);
      in_grad_tensor->set_lod(out_grad_tensor.lod());
    }
  }
};

class RNNMemoryHelperGradOpInfoMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
Y
Yang Yang(Tony) 已提交
120 121 122 123
    AddInput(framework::GradVarName("Out"), "");
    AddInput("X", "");
    AddInput("Out", "");
    AddOutput(framework::GradVarName("X"), "");
F
fengjiayi 已提交
124
    AddAttr<int>("dtype",
Y
Yang Yang(Tony) 已提交
125 126
                 "(int, default 5 (FP32)) "
                 "Output data type")
127
        .SetDefault(framework::proto::VarType::FP32);
Y
Yang Yang(Tony) 已提交
128 129 130 131 132 133 134 135 136
    AddComment("");
  }
};

class RNNMemoryHelperGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    PADDLE_ENFORCE(ctx->HasOutput(x_grad_name), "");
Y
Yu Yang 已提交
137 138 139
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
Y
Yang Yang(Tony) 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(rnn_memory_helper, paddle::operators::RNNMemoryHelperOp,
                  paddle::operators::RNNMemoryHelperOpInfoMaker,
                  paddle::operators::RNNMemoryHelperOpShapeInference,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(rnn_memory_helper_grad,
                  paddle::operators::RNNMemoryHelperGradOp,
                  paddle::operators::RNNMemoryHelperGradOpInfoMaker,
                  paddle::operators::RNNMemoryHelperGradOpShapeInference);