multi_devices_graph_pass.cc 32.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
25
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
27
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
28
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
30
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
31
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33 34 35
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
namespace {
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
    var = var_holder.rbegin()->get();
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
122

X
Xin Pan 已提交
123 124 125 126 127 128
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";

X
Xin Pan 已提交
129
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
130 131 132
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
133 134 135 136
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
Y
Yu Yang 已提交
137
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
138
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
139
#endif
X
Xin Pan 已提交
140

X
Xin Pan 已提交
141
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
142 143
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
144
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
145 146 147 148 149
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
150 151
}

X
Xin Pan 已提交
152 153
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
154 155
                                                size_t place_id) const {
  auto p = places_[place_id];
X
Xin Pan 已提交
156
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
X
Xin Pan 已提交
157 158
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
159

160 161
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
162 163 164
    op_handle->AddInput(var);
  }

165
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
166 167 168 169 170 171 172 173
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
174 175
  }
}
Y
fix pe  
Yancey1989 已提交
176 177

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
178
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
179
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
180 181
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
182 183
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
184 185
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
186
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
187 188 189 190 191 192 193 194 195 196
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
197
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
198
  std::vector<std::string> recv_vars;
199 200
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
201 202 203
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
204 205 206 207 208 209 210 211 212
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
213 214 215 216
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
217
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
234 235 236 237 238
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
239 240 241
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
  std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
X
better  
Xin Pan 已提交
242 243 244 245 246
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
247
      last_backward = i;
X
better  
Xin Pan 已提交
248 249 250
    }
  }

X
Xin Pan 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
      if (boost::get<int>(ret[i]->Op()->GetAttr(
              OpProtoAndCheckerMaker::OpRoleAttrName())) ==
          static_cast<int>(OpRole::kOptimize)) {
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
276
      }
X
Xin Pan 已提交
277 278 279 280
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
281 282
    }
  }
X
better  
Xin Pan 已提交
283 284 285
  return sorted_ret;
}

X
Xin Pan 已提交
286
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
287
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
288
  Init();
X
Xin Pan 已提交
289
  // Give the topology sort order and rebuild the graph structure.
X
better  
Xin Pan 已提交
290
  std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
X
Xin Pan 已提交
291 292
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
293 294

  for (auto &node : nodes) {
X
Xin Pan 已提交
295
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
296
      all_vars_.emplace(node->Name(), node->Var());
297
    }
C
fix ci  
chengduoZH 已提交
298
  }
C
chengduoZH 已提交
299
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
300 301

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
302 303 304 305
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
  result.Set(kShardedVarDevice, new ShardedVarDevice);
306

Y
fix pe  
Yancey1989 已提交
307
  // find send/recv vars so that we can place the distributed training
308
  // related op in the place 0
X
Xin Pan 已提交
309 310
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
311

C
chengduoZH 已提交
312 313 314
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
315
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
316
  bool is_forwarding = true;
Y
Yancey1989 已提交
317
  bool is_dist_train = false;
318

X
better  
Xin Pan 已提交
319
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
320
    if (boost::get<int>(
321
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
322
        static_cast<int>(OpRole::kRPC)) {
Y
Yancey1989 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
      int op_dev_id = CreateRPCOp(&result, node);
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
336 337 338
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
Y
Yancey1989 已提交
339 340 341 342 343
      int op_dev_id = CreateDistTrainOp(&result, node);
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
344
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
345
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
346 347
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
348
        // TODO(paddle-dev): Why is there no input for this op_handle?
349 350
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
        CreateScaleLossGradOp(&result, loss_grad_name);
Y
Yu Yang 已提交
351
      }
352 353 354 355
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
356
      is_forwarding = false;
Y
Yu Yang 已提交
357
    } else {
X
Xin Pan 已提交
358
      int op_dev_id = GetOpDeviceID(result, node);
C
chengduo 已提交
359
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
360
        CreateComputationalOp(&result, node, op_dev_id);
361
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
362
          graph->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
363
              .emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
364
        }
C
chengduo 已提交
365 366 367
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
368
        // TODO(paddle-dev): Why is so special about "read" op?
369 370
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
371
          CreateComputationalOps(&result, node, places_.size());
372
          const auto &data_var_names = node->Op()->Output("Out");
373
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
374
        } else {
X
Xin Pan 已提交
375
          CreateComputationalOps(&result, node, places_.size());
376 377
        }

C
chengduo 已提交
378 379 380
        if (!is_forwarding && places_.size() > 1) {
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
381
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
382 383 384
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
385 386
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
387
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
388

C
chengduo 已提交
389
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
390

C
chengduo 已提交
391 392 393 394
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
395

C
chengduo 已提交
396 397 398 399
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
400
                    graph->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
401
                        .emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
402 403 404
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
418
              }
C
chengduo 已提交
419
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
420
            }
Y
Yu Yang 已提交
421 422 423 424 425
          }
        }
      }
    }
  }
426 427 428 429 430
  bool use_gpu = false;
#ifdef PADDLE_WITH_CUDA
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
431 432 433 434 435
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
436 437 438
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
439 440 441 442 443
    for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
      auto &to_bcast_set = bcast_var_name_set[dev_id];
      for (auto &bcast_name : to_bcast_set) {
        CreateBroadcastOp(&result, bcast_name, dev_id);
      }
C
chengduoZH 已提交
444 445
    }
  }
Y
Yu Yang 已提交
446
  /*
X
Xin Pan 已提交
447 448 449
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
450
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
451

Y
Yu Yang 已提交
452 453 454 455
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
456
  PADDLE_ENFORCE(!ir::HasCircle(result));
Q
qiaolongfei 已提交
457
  return graph;
Y
Yu Yang 已提交
458 459
}

Y
Yancey1989 已提交
460 461 462
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
463 464 465
    return true;
  }
  return false;
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
#ifdef PADDLE_WITH_CUDA
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
481
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
482
                                                const std::string &p_name,
C
chengduoZH 已提交
483
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
484
#ifdef PADDLE_WITH_CUDA
X
polish  
Xin Pan 已提交
485 486 487
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
488
#else
X
polish  
Xin Pan 已提交
489 490 491
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
492
#endif
X
Xin Pan 已提交
493
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
494

X
Xin Pan 已提交
495
  auto *in =
X
Xin Pan 已提交
496
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
497 498 499 500
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
501
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
502
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
503 504 505
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
506 507 508 509 510
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

X
Xin Pan 已提交
511
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
512
                                                    ir::Node *node,
C
chengduoZH 已提交
513
                                                    int dev_id) const {
X
Xin Pan 已提交
514
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
515
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
516 517
                              local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
518 519
}

X
Xin Pan 已提交
520
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
521
                                                const std::string &og) const {
Y
Yu Yang 已提交
522
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
523
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
524 525
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
526
#else
X
Xin Pan 已提交
527
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
528 529
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
530
#endif
X
Xin Pan 已提交
531
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
Y
Yu Yang 已提交
532 533 534

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
535
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
536
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
537 538
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
539 540
    op_handle->AddInput(prev_grad.get());

X
Xin Pan 已提交
541
    auto var =
X
polish  
Xin Pan 已提交
542 543
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
544 545 546 547 548
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

549
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
550
    ir::Graph *result, const std::vector<std::string> &datas) const {
F
fengjiayi 已提交
551
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
552
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
553 554
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
555
#else
X
Xin Pan 已提交
556
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
557 558
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
559
#endif
X
Xin Pan 已提交
560
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
561 562 563 564
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
565
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
566 567
      PADDLE_ENFORCE(!vars.empty());
      op_handle->AddInput(vars.back().get());
X
polish  
Xin Pan 已提交
568 569 570
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
571 572 573 574 575 576
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
577 578
int MultiDevSSAGraphBuilder::GetOpDeviceID(const ir::Graph &graph,
                                           ir::Node *node) const {
Y
yuyang18 已提交
579
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
580 581
    return -1;
  }
582
  int op_role = boost::get<int>(
583
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
584 585
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
586
  }
587
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
588
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
589 590

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
591
  int dev_id = GetVarDeviceID(graph, param_grad[1]);
X
Xin Pan 已提交
592 593
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
594
  return dev_id;
595 596
}

X
Xin Pan 已提交
597 598
int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph,
                                            const std::string &varname) const {
X
Xin Pan 已提交
599
  auto &sharded_var_device = graph.Get<ShardedVarDevice>(kShardedVarDevice);
X
Xin Pan 已提交
600 601
  auto got = sharded_var_device.find(varname);
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
602 603
}

604 605
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
    ir::Graph *result, const std::string &loss_grad_name) const {
Y
Yu Yang 已提交
606
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
607 608
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
609
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
610
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
611
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
612
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
613 614 615 616 617 618 619

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

620 621 622 623
    CreateOpOutput(
        result, op_handle,
        result->CreateEmptyNode(loss_grad_name, ir::Node::Type::kVariable),
        places_[i], i);
Y
Yu Yang 已提交
624 625 626
  }
}

X
Xin Pan 已提交
627
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
628
                                                     ir::Node *node,
T
typhoonzero 已提交
629 630
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
631 632
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
633
    result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
634
        new ComputationOpHandle(result->CreateOpNode(node->Op()), s, p));
635
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
636 637 638
  }
}

X
Xin Pan 已提交
639
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
640 641
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
642
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
643
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
644 645
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
646
#else
X
Xin Pan 已提交
647
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
648 649
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
650
#endif
X
Xin Pan 已提交
651
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
C
chengduoZH 已提交
652 653 654

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
655
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
656
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
657 658 659 660
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
X
Xin Pan 已提交
661
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
662 663 664
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
665 666 667 668 669
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
Yancey1989 已提交
670 671
int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
                                               ir::Node *node) const {
Y
Yancey1989 已提交
672
  int op_dev_id = -1;
673 674 675
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
676
    input_var_names.push_back(input->Name());
677 678
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
679
    output_var_names.push_back(output->Name());
680 681 682
  }

  if (node->Op()->Type() == "split_byref" ||
T
tangwei12 已提交
683 684
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
685
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
686
    op_dev_id = GetVarDeviceID(*result, input_var_names[0]);
Y
Yancey1989 已提交
687
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
688 689
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
690
        result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
691
            .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
692 693
      }
    }
694
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
695
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
696
          .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
697
    }
698
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
699
    op_dev_id = GetVarDeviceID(*result, input_var_names[0]);
700
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
701
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
702
          .emplace(varname, op_dev_id);
Y
yi.wu 已提交
703
    }
Y
Yancey1989 已提交
704
  } else {
705
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
706
    PADDLE_THROW(
Y
Yancey1989 已提交
707 708 709 710 711
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
712 713
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
714

715
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
716
  return op_dev_id;
W
Wu Yi 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
        var = var_holder.rbegin()->get();
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
731 732 733
  }
}

734
// Create RPC related op handles that connects its in ops and out ops.
Y
Yancey1989 已提交
735 736
int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
                                         ir::Node *node) const {
Y
Yancey1989 已提交
737
  int op_dev_id = -1;
738
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
739
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
740
    op_dev_id = GetVarDeviceID(*result, node->inputs[0]->Name());
X
Xin Pan 已提交
741 742
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
743 744 745
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
746
        node->inputs[0]->Name().find(".block") == std::string::npos) {
747 748
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
749
        input_var_names.push_back(n->Name());
750
      }
W
Wu Yi 已提交
751 752 753 754 755 756
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
757
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
758
        result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
759
            .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
760
      }
W
Wu Yi 已提交
761 762
      result->Get<ShardedVarDevice>(kShardedVarDevice)
          .emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
763
    }
764 765 766
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
767
      output_var_names.push_back(n->Name());
768
    }
W
Wu Yi 已提交
769 770 771 772 773 774 775 776 777 778
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
      op_dev_id = GetVarDeviceID(*result, recv_param_grad[1]);
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
779
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
780
      result->Get<ShardedVarDevice>(kShardedVarDevice)
X
Xin Pan 已提交
781
          .emplace(varname, op_dev_id);
Y
Yancey1989 已提交
782 783
    }
  } else {
W
Wu Yi 已提交
784
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
785 786 787 788
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
789
                 node->Op()->Type());
X
Xin Pan 已提交
790
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
791 792
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
793

W
Wu Yi 已提交
794 795
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
796
  } else {
W
Wu Yi 已提交
797 798 799 800 801 802
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
803

W
Wu Yi 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
        outvar_dev_id = GetVarDeviceID(*result, output->Name());
        PADDLE_ENFORCE_NE(outvar_dev_id, -1);
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
822
  return op_dev_id;
Y
Yu Yang 已提交
823 824
}

825
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
826
  return boost::get<int>(
827
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
828 829 830
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
831
}
Y
Yu Yang 已提交
832 833 834
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
835

X
Xin Pan 已提交
836
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
837 838 839 840 841 842
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
    .RequirePassAttr(paddle::framework::details::kStrategy);