role_maker.py 29.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
15
import os
16
import time
17
import numpy as np
18
import warnings
19
from multiprocessing import Process, Manager
20

21
import paddle.fluid as fluid
22 23 24 25 26


class Role:
    WORKER = 1
    SERVER = 2
27
    HETER_WORKER = 3
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    ALL = 4


class Gloo(object):
    """
    Gloo is a universal class for barrier and collective communication
    """

    class RENDEZVOUS:
        HDFS = 1
        FILE = 2
        HTTP = 3

    def __init__(self):
        self._worker_comm = None
        self._server_comm = None
        self._nodes_comm = None

        self._comm_world = ["worker", "server", "all"]
        self._err_init = "gloo is not initialized, will not communicator with other nodes"
        self._err_type = "gloo initialized error, please check arguments"
        self._err_world = "argument error, comm_world must in {}".format(
            self._comm_world)

        self._is_initialized = False
        self._init_timeout_seconds = 3600
        self._run_timeout_seconds = 9999999

        self._rendezvous = None
        self._role = None
        self._iface = None

        self._role_id = -1
        self._worker_num = -1
        self._server_num = -1
        self._need_init_all = False

    def init(self,
             rendezvous,
             role,
             role_id,
             worker_num,
             server_num,
             need_init_all=False,
             kwargs=None):

        self._rendezvous = rendezvous
        self._role = role
        self._role_id = role_id
        self._worker_num = worker_num
        self._server_num = server_num
        self._need_init_all = need_init_all
        self._iface = self.__get_default_iface()
        self._prefix = kwargs.get("store.prefix", "")

        if self._rendezvous == Gloo.RENDEZVOUS.HDFS:
            dfs_name = kwargs.get("dfs.name", "")
            dfs_ugi = kwargs.get("dfs.ugi", "")
            dfs_path = kwargs.get("dfs.path", "")

            if not dfs_name or not dfs_ugi or not dfs_path:
                raise ValueError(self._err_type)
            self._init_dfs(dfs_name, dfs_ugi, dfs_path, self._prefix)

        elif self._rendezvous == Gloo.RENDEZVOUS.FILE:
            fs_path = kwargs.get("dfs.path", "")

            if not fs_path:
                raise ValueError(self._err_type)
            self._init_fs(fs_path, self._prefix)

        elif self._rendezvous == Gloo.RENDEZVOUS.HTTP:
            ip = kwargs.get("http.host", "")
            port = kwargs.get("http.port", "")

            if not ip or not port:
                raise ValueError(self._err_type)
            self._init_http(ip, port, self._prefix)

        else:
            raise ValueError(self._err_type)

        self._is_initialized = True

    def _init_fs(self, fs_path, prefix):
        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_hdfs_store(os.path.join(fs_path, role), "", "")
            gloo.init()
            return gloo

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _init_dfs(self, dfs_name, dfs_ugi, dfs_path, prefix):
        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_hdfs_store(os.path.join(dfs_path, role), dfs_name, dfs_ugi)
            gloo.init()
            return gloo

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _init_http(self, ip, port, prefix):
        def __start_kv_server(http_server_d, size_d):
            from paddle.distributed.fleet.utils.http_server import KVServer
            http_server = KVServer(port, size_d)
            http_server.start()
            wait_seconds = 5
            while http_server_d.get("running",
                                    False) and not http_server.shoud_stop():
                time.sleep(wait_seconds)
            http_server.stop()

        def init_kv_server():
            size_d = {
                "trainer": self._worker_num,
                "pserver": self._server_num,
                "all": self._worker_num + self._server_num
            }

            _http_server_d = {"running": True}
            # child process for http server
            _http_server = Process(
                target=__start_kv_server, args=(_http_server_d, size_d))
            _http_server.daemon = True
            # set running status to True
            # start child process
            _http_server.start()

        def init(rank, nodes, role):
            gloo = fluid.core.Gloo()
            gloo.set_rank(rank)
            gloo.set_size(nodes)
            gloo.set_prefix(prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_http_store(ip, port, role)
            return gloo

        port = int(port)

        if self._role == Role.SERVER and self._role_id == 0:
            init_kv_server()

        if self._role == Role.WORKER:
            rank, nodes = self._get_rank_nodes(Role.WORKER)
            gloo = init(rank, nodes, "WORKER")
            self._worker_comm = gloo
        else:
            rank, nodes = self._get_rank_nodes(Role.SERVER)
            gloo = init(rank, nodes, "SERVER")
            self._server_comm = gloo

        if self._need_init_all:
            rank, nodes = self._get_rank_nodes(Role.ALL)
            gloo = init(rank, nodes, "ALL")
            self._nodes_comm = gloo

    def _get_rank_nodes(self, role):
        nodes = 0
        rank = -1

        if role == Role.WORKER:
            nodes = self._worker_num
            rank = self._role_id
        elif role == Role.SERVER:
            nodes = self._server_num
            rank = self._role_id
        elif role == Role.ALL:
            nodes = self._worker_num + self._server_num

            if self._role == Role.WORKER:
                rank = self._role_id
            else:
                rank = self._worker_num + self._role_id
        else:
            ValueError(self._err_type)

        return rank, nodes

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

    def barrier(self, comm_world):
        """
        dummy barrier, do nothing
        """
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        if comm_world == "worker":
            self._worker_comm.barrier()
        elif comm_world == "server":
            self._server_comm.barrier()
        else:
            self._nodes_comm.barrier()

    def all_reduce(self, input, mode="sum", comm_world="worker"):
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return input

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        input = np.array(input)
        input_shape = input.shape
        input_list = input.reshape(-1).tolist()

        self.barrier(comm_world)

        if comm_world == "worker":
            ans = self._worker_comm.all_reduce(input_list, mode)
        elif comm_world == "server":
            ans = self._server_comm.all_reduce(input_list, mode)
        else:
            ans = self._nodes_comm.all_reduce(input_list, mode)

        output = np.array(ans).reshape(input_shape)
        return output

    def all_gather(self, input, comm_world="worker"):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        if not self._is_initialized:
            warnings.warn(self._err_init)
            return input

        if comm_world not in self._comm_world:
            raise ValueError(self._err_world)

        if comm_world == "worker":
            output = self._worker_comm.all_gather(input)
        elif comm_world == "server":
            output = self._server_comm.all_gather(input)
        else:
            output = self._nodes_comm.all_gather(input)

        return output
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358


class RoleMakerBase(object):
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

    def __init__(self):
        self._worker_endpoints = []
        self._server_endpoints = []
        self._role_is_generated = False
        self._role = None
        self._current_id = -1

359 360 361 362 363
        # for heter parameter server mode
        self._heter_trainer_endpoints = []
        self._heter_trainer_device = "CPU"
        self._is_heter_parameter_server_mode = False

364
    def _is_worker(self):
365 366 367 368 369
        """
        return is_worker() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

370
    def _is_server(self):
371 372 373 374 375
        """
        return is_server() of current process
        """
        raise NotImplementedError("Please implement this method in child class")

376
    def _is_first_worker(self):
377 378 379 380 381 382 383 384
        """
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
        raise NotImplementedError("Please implement this method in child class")

385
    def _worker_num(self):
386 387 388 389 390 391 392 393
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

394
    def _server_num(self):
395 396 397 398 399 400 401 402
        """
        Get current total server number.

        Returns:
            int: server number
        """
        raise NotImplementedError("Please implement this method in child class")

403
    def _worker_index(self):
404 405 406 407 408 409 410 411
        """
        Get current worker id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

412
    def _server_index(self):
413 414 415 416 417 418 419 420
        """
        Get current server id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

421
    def _role_id(self):
422 423 424 425 426 427 428 429
        """
        Get current id.

        Returns:
            int: node id
        """
        raise NotImplementedError("Please implement this method in child class")

430
    def _node_num(self):
431 432 433 434 435 436 437
        """
        Get the training node number
        Returns:
            int: node num
        """
        raise NotImplementedError("Please implement this method in child class")

438
    def _get_trainer_endpoints(self):
439 440 441 442 443
        """
        return trainer endpoints
        """
        return self._worker_endpoints

444
    def _get_pserver_endpoints(self):
445 446 447 448 449 450 451 452 453 454
        """
        return pserver endpoints
        """
        return self._server_endpoints

    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

455 456
    def _all_gather(self, input, comm_world="worker"):
        print("warning: RoleMakerBase does not have all gather worker.")
457 458
        return None

459
    def _all_reduce(self, input, mode="sum", comm_world="worker"):
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        """
        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")
        return None

    def _barrier(self, comm_world):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
    def _is_heter_worker(self):
        """
        Return is_heter_worker() of current process
        """
        warnings.warn("RoleMakerBase does not have function: _is_heter_worker.")
        return False

    def _heter_worker_num(self):
        """
        Get current total heter-worker number.

        Returns:
            int: heter_worker number
        """
        warnings.warn(
            "RoleMakerBase does not have function: _heter_worker_num.")
        return 0

    def _get_heter_worker_endpoints(self):
        """
        Returns:
            string: all heter_trainers'endpoints
        """
C
Chengmo 已提交
498
        assert self._heter_trainer_endpoints != [], "Heter Worker Endpoints Not initialized"
499 500 501 502 503 504 505 506 507
        return self._heter_trainer_endpoints

    def _get_heter_worker_endpoint(self):
        """
        Returns:
            int: corresponding heter_trainer's endpoint

        e.g: if we have 4 cpu-trainer(default), 2 gpu-trainer(heter)
             then No.0 and No.2 cpu-trainer will work with No.0 gpu-trainer
C
Chengmo 已提交
508
             and No.1 and No.3 cpu-trainer will work with No.1 gpu-trainer
509
        """
C
Chengmo 已提交
510 511
        assert self._heter_trainer_endpoints != [], "Heter Worker Endpoints Not initialized"
        return self._heter_trainer_endpoints[(self._current_id) %
512 513 514 515 516 517 518 519 520
                                             self._heter_worker_num()]

    def _get_heter_worker_device(self):
        """
        Returns:
            string: heter_trainer's device of current node, e.g: CPU/GPU/XPU
        """
        return self._heter_trainer_device.upper()

521 522

class PaddleCloudRoleMaker(RoleMakerBase):
523
    def __init__(self, is_collective=False, **kwargs):
524 525 526
        super(PaddleCloudRoleMaker, self).__init__()
        self._is_collective = is_collective

527 528 529
        self._non_distributed = False

        self._kwargs = kwargs
530 531 532 533 534
        self._role_is_generated = False

        self._server_endpoints = None
        self._worker_endpoints = None

535
        self._gloo = Gloo()  # gloo instance
536 537

    def _barrier(self, comm_world):
538
        self._gloo.barrier(comm_world)
539

540 541
    def _all_gather(self, input, comm_world="worker"):
        return self._gloo.all_gather(input, comm_world)
542

543 544
    def _all_reduce(self, input, mode="sum", comm_world="worker"):
        return self._gloo.all_reduce(input, mode, comm_world)
545

546
    def _is_worker(self):
547 548 549 550
        """
        whether current process is worker
        """
        if not self._role_is_generated:
551
            self._generate_role()
552 553
        return self._role == Role.WORKER

554
    def _is_server(self):
555 556 557 558
        """
        whether current process is server
        """
        if not self._role_is_generated:
559
            self._generate_role()
560 561
        return self._role == Role.SERVER

562
    def _is_first_worker(self):
563 564 565 566
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
567
            self._generate_role()
568 569
        return self._role == Role.WORKER and self._current_id == 0

570
    def _worker_index(self):
571 572 573 574
        """
        get index of current worker
        """
        if not self._role_is_generated:
575
            self._generate_role()
576 577
        return self._current_id

578
    def _server_index(self):
579 580 581 582
        """
        get index of current server
        """
        if not self._role_is_generated:
583
            self._generate_role()
584 585
        return self._current_id

586
    def _role_id(self):
587 588 589
        """
        get index of current node
        """
590 591
        if not self._role_is_generated:
            self._generate_role()
592
        return self._current_id
593

594
    def _worker_num(self):
595 596 597 598
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
599
            self._generate_role()
600 601
        return self._trainers_num

602
    def _server_num(self):
603 604 605 606
        """
        return the current number of server
        """
        if not self._role_is_generated:
607
            self._generate_role()
608 609
        return len(self._get_pserver_endpoints(
        )) if self._get_pserver_endpoints() is not None else 0
610

611
    def _node_num(self):
612 613 614 615
        """
        return the training node number
        """
        if not self._role_is_generated:
616 617
            self._generate_role()
        return self._nodes_num
618

619
    def _get_trainer_endpoints(self):
620 621 622 623
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
624
            self._generate_role()
625 626
        return self._worker_endpoints

627
    def _get_pserver_endpoints(self):
628 629 630 631
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
632
            self._generate_role()
633 634
        return self._server_endpoints

635 636 637 638 639 640
    def _is_non_distributed(self):
        """
        Return True if indispensable environment for fleetrun is not found
        (use python-run to launch fleet-code directly)
        """
        if not self._role_is_generated:
641
            self._generate_role()
642 643
        return self._non_distributed

644 645 646 647 648
    def _heter_worker_num(self):
        """
        get heter worker nums
        """
        if not self._role_is_generated:
649
            self._generate_role()
650 651 652 653 654 655 656
        return self._heter_trainers_num

    def _is_heter_worker(self):
        """
        whether current process is heter worker
        """
        if not self._role_is_generated:
657
            self._generate_role()
658 659
        return self._role == Role.HETER_WORKER

660 661 662
    def _ps_env(self):
        try:
            # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
663
            # format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
664
            self._server_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
665

666 667 668 669 670 671
            if self._server_endpoints is None:
                # back to non_distributed execution.
                self._server_endpoints = ""
                self._trainers_num = 1
                self._role = Role.WORKER
                self._current_id = 0
672
                self._nodes_num = 1
673 674 675 676 677 678
                self._heter_trainers_num = 0
                self._heter_trainer_endpoints = None
                self._non_distributed = True
                return

            self._server_endpoints = self._server_endpoints.split(",")
679 680 681 682 683 684 685

            self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
            if self._worker_endpoints:
                self._worker_endpoints = self._worker_endpoints.split(",")
            else:
                self._worker_endpoints = []

686 687 688
            trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
            training_role = os.environ["TRAINING_ROLE"]

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
            if training_role not in ["TRAINER", "PSERVER", "HETER_TRAINER"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER, but get {}, please check your environment.".
                    format(training_role))

            # For heter parameter server env setting
            heter_trainer_eplist = os.getenv(
                "PADDLE_HETER_TRAINER_IP_PORT_LIST", None)
            heter_trainer_device = os.getenv("PADDLE_HETER_TRAINER_DEVICE",
                                             None)
            if heter_trainer_eplist and heter_trainer_device:
                try:
                    heter_trainer_eplist = os.environ[
                        "PADDLE_HETER_TRAINER_IP_PORT_LIST"].split(",")
                except:
                    raise ValueError(
                        "Can not Find PADDLE_HETER_TRAINER_IP_PORT_LIST in env or its format doesn't match the requirement: 'IP:PORT,IP:PORT' ."
                    )

                self._is_heter_parameter_server_mode = True
                heter_trainers_num = len(heter_trainer_eplist)
                current_node_device = heter_trainer_device.upper()
                if current_node_device not in ["CPU", "GPU", "XPU"]:
                    raise ValueError(
                        "Heter Trainer doesn't support {} device now, please use CPU / GPU / XPU(KunLun)".
                        format(heter_trainer_device))
                self._heter_trainer_device = current_node_device
            else:
                self._is_heter_parameter_server_mode = False
                heter_trainers_num = 0
719 720 721 722 723 724 725 726 727 728 729 730

            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                if len(self._worker_endpoints) > 0:
                    self._cur_endpoint = self._worker_endpoints[current_id]
            elif training_role == "PSERVER":
                role = Role.SERVER
                port = os.environ["PADDLE_PORT"]
                ip = os.environ["POD_IP"]
                self._cur_endpoint = ip + ":" + port
                current_id = self._server_endpoints.index(self._cur_endpoint)
731 732 733 734 735 736
            elif training_role == "HETER_TRAINER":
                role = Role.HETER_WORKER
                cur_ip = os.environ["POD_IP"]
                cur_port = os.environ["PADDLE_PORT"]
                curr_endpoint = ":".join([cur_ip, cur_port])
                current_id = heter_trainer_eplist.index(curr_endpoint)
737
            else:
738 739 740
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or HETER_TRAINER")
        except ValueError as e:
741
            raise ValueError(
742
                "Something wrong with PaddleCloud, please check environment")
743 744 745 746

        self._trainers_num = trainers_num
        self._role = role
        self._current_id = current_id
747
        self._nodes_num = len(
748
            set([x.split(':')[0] for x in self._worker_endpoints]))
749 750
        self._heter_trainers_num = heter_trainers_num
        self._heter_trainer_endpoints = heter_trainer_eplist
751 752 753 754 755

    def _collective_env(self):
        self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
        assert (self._training_role == "TRAINER")
756
        self._role = Role.WORKER
757 758
        self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
759 760 761 762 763
        if self._worker_endpoints is None:
            # back to non_distributed execution.
            self._worker_endpoints = "127.0.0.1:6170"
            self._cur_endpoint = self._worker_endpoints
            self._non_distributed = True
764 765
        self._worker_endpoints = self._worker_endpoints.split(",")
        self._trainers_num = len(self._worker_endpoints)
766
        self._nodes_num = len(
767
            set([x.split(':')[0] for x in self._worker_endpoints]))
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    def _gloo_init(self):
        # PADDLE_WITH_GLOO 1: trainer barrier, 2: all barrier
        use_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
        if use_gloo not in [1, 2]:
            return

        # PADDLE_GLOO_RENDEZVOUS 1: HDFS 2: FILE 3: HTTP
        rendezvous_type = int(os.getenv("PADDLE_GLOO_RENDEZVOUS", "0"))
        prefix = os.getenv("SYS_JOB_ID", "")
        if rendezvous_type not in [
                Gloo.RENDEZVOUS.HDFS, Gloo.RENDEZVOUS.HTTP, Gloo.RENDEZVOUS.FILE
        ]:
            raise ValueError(self._gloo._err_type)

        need_init_all = True if use_gloo == 2 else False

        if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
            dfs_name = os.getenv("PADDLE_GLOO_FS_NAME", "")
            dfs_ugi = os.getenv("PADDLE_GLOO_FS_UGI", "")
            dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
            kwargs = {
                "dfs.name": dfs_name,
                "dfs.ugi": dfs_ugi,
                "dfs.path": dfs_path,
                "store.prefix": prefix,
            }
        elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
            ip = os.getenv("PADDLE_GLOO_HTTP_HOST", "")
            port = os.getenv("PADDLE_GLOO_HTTP_PORT", "")
            kwargs = {
                "http.host": ip,
                "http.port": port,
                "store.prefix": prefix,
            }
803
        else:
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            dfs_path = os.getenv("PADDLE_GLOO_FS_PATH", "")
            kwargs = {
                "dfs.path": dfs_path,
                "store.prefix": prefix,
            }

        if rendezvous_type == Gloo.RENDEZVOUS.HDFS:
            type = "HDFS"
        elif rendezvous_type == Gloo.RENDEZVOUS.HTTP:
            type = "HTTP"
        else:
            type = "FILE"
        print("Gloo init with {}: need_init_all: {}, args: {}".format(
            type, need_init_all, kwargs))

        self._gloo.init(
            rendezvous=rendezvous_type,
            role=self._role,
822 823 824
            role_id=self._role_id(),
            worker_num=self._worker_num(),
            server_num=self._server_num(),
825 826
            need_init_all=need_init_all,
            kwargs=kwargs)
827

828
    def _generate_role(self):
829 830 831 832 833 834 835 836 837
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._ps_env()
            else:
                self._collective_env()
            self._role_is_generated = True
838
            self._gloo_init()
839 840 841 842 843 844


class UserDefinedRoleMaker(PaddleCloudRoleMaker):
    def __init__(self, is_collective=False, init_gloo=False, **kwargs):
        super(UserDefinedRoleMaker, self).__init__(
            is_collective=is_collective, init_gloo=init_gloo, **kwargs)
845
        self._init_gloo = init_gloo
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

    def _user_defined_ps_env(self):
        self._server_endpoints = self._kwargs.get("server_endpoints")
        self._worker_endpoints = self._kwargs.get("worker_endpoints", [])
        self._trainers_num = self._kwargs.get("worker_num", 0)

        if self._trainers_num == 0:
            assert (len(self._worker_endpoints) > 0)
            self._trainers_num = len(self._worker_endpoints)

        self._role = self._kwargs.get("role")
        self._current_id = self._kwargs.get("current_id")

        if self._role == Role.WORKER and len(
                self._worker_endpoints) > self._current_id:
            self._cur_endpoint = self._worker_endpoints[self._current_id]
        elif self._role == Role.SERVER:
            self._cur_endpoint = self._server_endpoints[self._current_id]
864
        self._nodes_num = len(
865
            set([x.split(':')[0] for x in self._worker_endpoints]))
866 867 868 869 870

    def _user_defined_collective_env(self):
        self._worker_endpoints = self._kwargs.get("worker_endpoints")
        self._current_id = self._kwargs.get("current_id")
        self._trainers_num = len(self._worker_endpoints)
871
        self._training_role = Role.WORKER
872
        self._nodes_num = len(
873
            set([x.split(':')[0] for x in self._worker_endpoints]))
874

875
    def _generate_role(self):
876 877 878 879 880 881 882 883 884
        """
        generate role for role maker
        """
        if not self._role_is_generated:
            if not self._is_collective:
                self._user_defined_ps_env()
            else:
                self._user_defined_collective_env()
            self._role_is_generated = True