uniform_random_op.cu 2.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16 17 18
#include <thrust/device_ptr.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
Y
Yu Yang 已提交
19 20
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
Y
Yu Yang 已提交
21

Y
Yu Yang 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;

  __host__ __device__ UniformGenerator(T min, T max, int seed)
      : min_(min), max_(max), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    return dist(rng);
  }
};

Y
Yu Yang 已提交
42 43 44
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
Y
Yu Yang 已提交
45
template <typename T>
Y
Yu Yang 已提交
46
class GPUUniformRandomKernel : public framework::OpKernel {
Y
Yu Yang 已提交
47
 public:
Y
Yu Yang 已提交
48
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
49
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
50 51 52 53
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed =
        static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
    if (seed == 0) {
54 55
      std::random_device rd;
      seed = rd();
Y
Yu Yang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
    }
    T min = static_cast<T>(context.op_.GetAttr<float>("min"));
    T max = static_cast<T>(context.op_.GetAttr<float>("max"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    ssize_t N = framework::product(tensor->dims());
    thrust::transform(index_sequence_begin, index_sequence_begin + N,
                      thrust::device_ptr<T>(data),
                      UniformGenerator<T>(min, max, seed));
  }
};

}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
70 71
REGISTER_OP_GPU_KERNEL(uniform_random,
                       paddle::operators::GPUUniformRandomKernel<float>);