gather_nd_kernel.cc 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/gather_nd_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void GatherNdKernel(const Context &ctx,
                    const DenseTensor &x,
                    const DenseTensor &index,
                    DenseTensor *out) {
  ctx.template Alloc<T>(out);
  const auto &index_type = index.dtype();

  if (x.numel() == 0) return;

  if (index.numel() == 0) {
33 34 35 36
    out->Resize(x.dims());
    ctx.template Alloc<T>(out);
    int r = xpu::copy(ctx.x_context(), x.data<T>(), out->data<T>(), x.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy");
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    return;
  }

  bool index_type_match =
      index_type == DataType::INT32 || index_type == DataType::INT64;
  PADDLE_ENFORCE_EQ(
      index_type_match,
      true,
      phi::errors::InvalidArgument("Index holds the wrong type, it holds [%s],"
                                   "but desires to be [%s] or [%s]",
                                   index_type,
                                   DataType::INT32,
                                   DataType::INT64));

  auto x_shape = phi::vectorize<int>(x.dims());
  auto index_shape = phi::vectorize<int>(index.dims());
  if (index_shape.size() == 1) {
    index_shape.insert(index_shape.begin(), 1);
  }
  xpu::VectorParam<int> x_vec = {
      x_shape.data(), static_cast<int>(x_shape.size()), nullptr};

  int ret = XPU_SUCCESS;
  if (index_type == DataType::INT32) {
    ret = xpu::gather_nd<T, int>(ctx.x_context(),
                                 x.data<T>(),
                                 index.data<int>(),
                                 out->data<T>(),
                                 x_vec,
                                 index_shape);
  } else {
    ret = xpu::gather_nd<T, int64_t>(ctx.x_context(),
                                     x.data<T>(),
                                     index.data<int64_t>(),
                                     out->data<T>(),
                                     x_vec,
                                     index_shape);
  }
75
  PADDLE_ENFORCE_XDNN_SUCCESS(ret, "gather_nd");
76 77 78 79 80 81
}

}  // namespace phi

PD_REGISTER_KERNEL(
    gather_nd, XPU, ALL_LAYOUT, phi::GatherNdKernel, float, int64_t, int) {}