cross_entropy_op.h 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
20
#include "paddle/fluid/platform/for_range.h"
Q
Qiao Longfei 已提交
21 22 23 24

namespace paddle {
namespace operators {

D
dongzhihong 已提交
25 26
using Tensor = framework::Tensor;

27
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
28
class CrossEntropyOpKernel : public framework::OpKernel<T> {
29
 public:
D
dongzhihong 已提交
30
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32 33
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* y = ctx.Output<Tensor>("Y");
34
    y->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
35

36
    int rank = x->dims().size();
F
fengjiayi 已提交
37 38 39
    Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1);
    Tensor labels_2d = framework::ReshapeToMatrix(*labels, rank - 1);
    Tensor y_2d = framework::ReshapeToMatrix(*y, rank - 1);
40

41
    math::CrossEntropyFunctor<DeviceContext, T>()(
42
        ctx.template device_context<DeviceContext>(), &y_2d, &x_2d, &labels_2d,
43
        ctx.Attr<bool>("soft_label"), ctx.Attr<int>("ignore_index"));
Y
Yan Chunwei 已提交
44 45 46
  }
};

47
template <typename T>
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class XeSoftlabelGradFunctor {
 public:
  XeSoftlabelGradFunctor(T* dx,
                         const T* dy,     // NOLINT
                         const T* x,      // NOLINT
                         const T* label,  // NOLINT
                         size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

  HOSTDEVICE void operator()(size_t i) {
    auto row_ids = i / num_classes_;
    dx_[i] = -label_[i] * dy_[row_ids] / x_[i];
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const T* label_;
  size_t num_classes_;
};

template <typename T>
class XeGradFunctor {
 public:
  XeGradFunctor(T* dx,
                const T* dy,           // NOLINT
                const T* x,            // NOLINT
                const int64_t* label,  // NOLINT
77 78 79 80 81 82 83
                size_t num_classes, size_t ignore_index)
      : dx_(dx),
        dy_(dy),
        x_(x),
        label_(label),
        num_classes_(num_classes),
        ignore_index_(ignore_index) {}
84

Y
Yu Yang 已提交
85 86 87 88
  HOSTDEVICE void operator()(size_t sample_id) {
    auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id];
    for (size_t x_offset = sample_id * num_classes_;
         x_offset < (sample_id + 1) * num_classes_; ++x_offset) {
89 90 91 92
      dx_[x_offset] =
          (x_offset != x_is_true_offset || label_[sample_id] == ignore_index_)
              ? static_cast<T>(0)
              : -dy_[sample_id] / x_[x_offset];
93 94 95 96 97 98 99 100 101
    }
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const int64_t* label_;
  size_t num_classes_;
102
  size_t ignore_index_;
103 104 105
};

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
106
class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
Y
Yan Chunwei 已提交
107
 public:
D
dongzhihong 已提交
108
  void Compute(const framework::ExecutionContext& ctx) const override {
109 110 111 112
    auto* x = ctx.Input<Tensor>("X");
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* label = ctx.Input<Tensor>("Label");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
113
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
114

115 116 117 118
    // Following computation only depends on the last dimension size. So it's
    // unnecessary to convert tensors to 2-D views.
    int rank = x->dims().size();
    int64_t class_num = x->dims()[rank - 1];
119
    int64_t ignore_index = ctx.Attr<int>("ignore_index");
120
    if (ctx.Attr<bool>("soft_label")) {
121 122 123 124 125 126 127
      XeSoftlabelGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
                                        label->data<T>(),
                                        static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dx->numel()));
      for_range(functor);
128
    } else {
129 130 131
      XeGradFunctor<T> functor(
          dx_data, dy->data<T>(), x->data<T>(), label->data<int64_t>(),
          static_cast<size_t>(class_num), static_cast<size_t>(ignore_index));
132 133 134 135
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dy->numel()));
      for_range(functor);
Q
Qiao Longfei 已提交
136 137 138 139 140 141
    }
  }
};

}  // namespace operators
}  // namespace paddle