test_primops.py 6.2 KB
Newer Older
L
levi131 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
L
levi131 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
L
levi131 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
L
levi131 已提交
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
18 19 20 21 22 23
from paddle.incubate.autograd.primops import (neg, set_value, add, sub, mul,
                                              div, sqrt, tanh, reshape,
                                              broadcast, transpose, split,
                                              concat, reduce, matmul,
                                              slice_select, slice_assign,
                                              gather, scatter_add, fill_const)
24
from paddle.incubate.autograd.primx import Transform, topo_path, orig2prim, prim2orig
25
from paddle.incubate.autograd.utils import enable_prim, disable_prim, prim_enabled
L
levi131 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


class TestPyPrimOps(unittest.TestCase):
    """ Test Python wrappers of primitive ops. """

    def setUp(self):
        paddle.enable_static()

    def test_ops(self):
        A = np.random.rand(1)
        B = np.random.rand(2)
        C = np.random.rand(2, 3)
        D = np.random.rand(2, 3)
        E = np.random.rand(3, 2)

        a = paddle.static.data(name='A', shape=A.shape, dtype='float32')
        b = paddle.static.data(name='B', shape=B.shape, dtype='float32')
        c = paddle.static.data(name='C', shape=C.shape, dtype='float32')
        d = paddle.static.data(name='D', shape=D.shape, dtype='float32')
        e = paddle.static.data(name='E', shape=E.shape, dtype='float32')

        add_1 = add(a, a)
        self.assertEqual(add_1.dtype, a.dtype)
        self.assertEqual(add_1.shape, a.shape)

        add_2 = add(c, d)
        self.assertEqual(add_2.dtype, c.dtype)
        self.assertEqual(add_2.shape, c.shape)

        sub_1 = sub(c, d)
        self.assertEqual(sub_1.dtype, c.dtype)
        self.assertEqual(sub_1.shape, c.shape)

        mul_1 = mul(c, d)
        self.assertEqual(mul_1.dtype, c.dtype)
        self.assertEqual(mul_1.shape, c.shape)

        div_1 = div(c, d)
        self.assertEqual(div_1.dtype, c.dtype)
        self.assertEqual(div_1.shape, c.shape)

        sqrt_1 = sqrt(b)
        self.assertEqual(sqrt_1.dtype, b.dtype)
        self.assertEqual(sqrt_1.shape, b.shape)

        tanh_1 = tanh(d)
        self.assertEqual(tanh_1.dtype, d.dtype)
        self.assertEqual(tanh_1.shape, d.shape)

        reshape_1 = reshape(c, d.shape)
        self.assertEqual(reshape_1.dtype, c.dtype)
        self.assertEqual(reshape_1.shape, d.shape)

        broadcast_1 = broadcast(b, e.shape)
        self.assertEqual(broadcast_1.dtype, b.dtype)
        self.assertEqual(broadcast_1.shape, e.shape)

        transpose_1 = transpose(c, axis=[1, 0])
        self.assertEqual(transpose_1.dtype, c.dtype)
        self.assertEqual(transpose_1.shape, e.shape)

        split_1_0, split_1_1 = split(c, num_or_sections=[1, 2], axis=1)
        self.assertEqual(split_1_0.dtype, c.dtype)
        self.assertEqual(split_1_0.shape, (2, 1))
        self.assertEqual(split_1_1.shape, (2, 2))

        concat_1 = concat([c, d], axis=0)
        self.assertEqual(concat_1.dtype, c.dtype)
        self.assertEqual(concat_1.shape, (4, 3))

        reduce_1 = reduce(d, axis=[1])
        self.assertEqual(reduce_1.dtype, d.dtype)
        self.assertEqual(reduce_1.shape, (2, ))

        reduce_2 = reduce(c, axis=[0, 1])
        self.assertEqual(reduce_2.dtype, c.dtype)
        self.assertEqual(reduce_2.shape, (1, ))
        # TODO: reduce + keepdim

        matmul_1 = matmul(d, e)
        self.assertEqual(matmul_1.dtype, d.dtype)
        self.assertEqual(matmul_1.shape, (2, 2))

109 110 111 112 113
        slice_select_1 = slice_select(e,
                                      axis=[0],
                                      starts=[0],
                                      ends=[2],
                                      strides=[1])
L
levi131 已提交
114 115 116
        self.assertEqual(slice_select_1.dtype, e.dtype)
        self.assertEqual(slice_select_1.shape, (2, 2))

117 118 119 120 121
        slice_select_2 = slice_select(d,
                                      axis=[0, 1],
                                      starts=[0, 1],
                                      ends=[2, 3],
                                      strides=[1, 2])
L
levi131 已提交
122 123 124 125
        self.assertEqual(slice_select_2.dtype, d.dtype)
        self.assertEqual(slice_select_2.shape, (2, 1))

        y = broadcast(b, [2, 2])
126 127 128 129 130 131
        slice_assign_1 = slice_assign(d,
                                      y,
                                      axis=[1],
                                      starts=[1],
                                      ends=[3],
                                      strides=[1])
L
levi131 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.assertEqual(slice_assign_1.dtype, d.dtype)
        self.assertEqual(slice_assign_1.shape, d.shape)

        index = paddle.static.data('index', shape=[5], dtype='int32')
        gather_1 = gather(e, index, axis=0)
        self.assertEqual(gather_1.dtype, e.dtype)
        self.assertEqual(gather_1.shape, (5, 2))

        y = paddle.rand([5, 2], dtype='float32')
        scatter_add_1 = scatter_add(e, y, index, axis=0)
        self.assertEqual(scatter_add_1.dtype, e.dtype)
        self.assertEqual(scatter_add_1.shape, e.shape)

        fill_const_1 = fill_const(value=10, shape=a.shape, dtype=a.dtype)
        self.assertEqual(fill_const_1.shape, a.shape)
        self.assertEqual(fill_const_1.dtype, a.dtype)

        neg_1 = neg(x=b)
        self.assertEqual(neg_1.shape, b.shape)
        self.assertEqual(neg_1.dtype, b.dtype)

153 154 155 156 157 158 159
        set_value_1 = set_value(d,
                                a,
                                axis=[1],
                                starts=[1],
                                ends=[3],
                                strides=[1],
                                out=d)
L
levi131 已提交
160 161 162 163 164 165
        self.assertEqual(set_value_1.shape, d.shape)
        self.assertEqual(set_value_1.dtype, d.dtype)


if __name__ == '__main__':
    unittest.main()