test_imperative_optimizer.py 7.2 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
M
minqiyang 已提交
18
import six
M
minqiyang 已提交
19

M
minqiyang 已提交
20
import paddle
M
minqiyang 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
23
from paddle.fluid.optimizer import SGDOptimizer
24 25
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
M
minqiyang 已提交
26
from test_imperative_base import new_program_scope
27 28


X
Xin Pan 已提交
29
class SimpleImgConvPool(fluid.imperative.Layer):
30 31
    def __init__(self,
                 num_channels,
32
                 num_filters,
M
minqiyang 已提交
33
                 filter_size,
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__()

        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
M
minqiyang 已提交
68

69 70 71 72
    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
M
minqiyang 已提交
73 74


X
Xin Pan 已提交
75
class MNIST(fluid.imperative.Layer):
76
    def __init__(self, param_attr=None, bias_attr=None):
M
minqiyang 已提交
77
        super(MNIST, self).__init__()
M
minqiyang 已提交
78

79
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
M
minqiyang 已提交
80
            1, 20, 5, 2, 2, act="relu")
81 82

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
M
minqiyang 已提交
83
            20, 50, 5, 2, 2, act="relu")
84 85 86 87

        pool_2_shape = 50 * 8 * 8
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
M
minqiyang 已提交
88
        self._fc = FC(10,
89 90 91
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)))
M
minqiyang 已提交
92 93

    def forward(self, inputs):
94 95
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
96
        x = self._fc(x)
M
minqiyang 已提交
97 98 99 100 101
        return x


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_cpu_float32(self):
M
minqiyang 已提交
102 103
        seed = 90

M
minqiyang 已提交
104
        with fluid.imperative.guard():
M
minqiyang 已提交
105 106 107
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
108 109
            #  mnist = Conv2D(1, 20, 5)
            mnist = MNIST()
M
minqiyang 已提交
110
            sgd = SGDOptimizer(learning_rate=1e-3)
M
minqiyang 已提交
111 112 113
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

M
minqiyang 已提交
114
            dy_param_init_value = {}
M
minqiyang 已提交
115
            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
116
                if batch_id >= 2:
M
minqiyang 已提交
117 118 119 120 121 122
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    128, 1)
123 124 125 126 127

                img = to_variable(x_data)
                label = to_variable(y_data)
                label._stop_gradient = True

M
minqiyang 已提交
128 129 130 131
                cost = mnist(img)
                loss = fluid.layers.reduce_mean(cost)
                dy_out = loss._numpy()

M
minqiyang 已提交
132 133 134 135 136
                if batch_id == 0:
                    for param in fluid.default_main_program().global_block(
                    ).all_parameters():
                        dy_param_init_value[param.name] = param._numpy()

M
minqiyang 已提交
137 138
                loss._backward()
                sgd.minimize(loss)
M
minqiyang 已提交
139 140 141 142
                dy_param_value = {}
                for param in fluid.default_main_program().global_block(
                ).all_parameters():
                    dy_param_value[param.name] = param._numpy()
M
minqiyang 已提交
143 144 145 146 147 148 149

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace())

M
minqiyang 已提交
150 151
            #  mnist = Conv2D(1, 20, 5)
            mnist = MNIST()
M
minqiyang 已提交
152 153 154 155 156 157 158 159 160 161 162 163
            sgd = SGDOptimizer(learning_rate=1e-3)
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(), batch_size=128)

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
            loss = fluid.layers.reduce_mean(cost)
            sgd.minimize(loss)

            # initialize params and fetch them
M
minqiyang 已提交
164
            static_param_init_value = {}
M
minqiyang 已提交
165 166 167 168 169 170 171 172 173
            static_param_name_list = []
            for param in fluid.default_startup_program().global_block(
            ).all_parameters():
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
M
minqiyang 已提交
174
                static_param_init_value[static_param_name_list[i]] = out[i]
M
minqiyang 已提交
175 176

            for batch_id, data in enumerate(train_reader()):
M
minqiyang 已提交
177
                if batch_id >= 2:
M
minqiyang 已提交
178 179 180 181 182 183 184
                    break

                x_data = np.array(
                    [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data]).astype('int64').reshape(
                    [128, 1])

M
minqiyang 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                fetch_list = [loss.name]
                fetch_list.extend(static_param_name_list)
                out = exe.run(fluid.default_main_program(),
                              feed={"pixel": x_data,
                                    "label": y_data},
                              fetch_list=fetch_list)

                static_param_value = {}
                static_out = out[0]
                for i in range(1, len(out)):
                    static_param_value[static_param_name_list[i - 1]] = out[i]

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(
                np.allclose(value.all(), dy_param_init_value[key].all()))
        self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
M
minqiyang 已提交
201 202
        for key, value in six.iteritems(static_param_value):
            self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
M
minqiyang 已提交
203 204 205 206


if __name__ == '__main__':
    unittest.main()