activation_mkldnn_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
17
#include "paddle/fluid/operators/mkldnn_activation_op.h"
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

namespace {
K
Krzysztof Binias 已提交
26 27 28 29 30 31 32
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
  return std::string(std::to_string(operand_dims[0]) + "-" +
                     std::to_string(operand_dims[1]) + "-" +
                     std::to_string(algorithm));
}

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
template <typename T, typename ExecContext>
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
                     const T alpha = 0, const T beta = 0) {
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");

  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
  const auto *src = ctx.template Input<Tensor>("X");
  const auto *src_data = src->template data<T>();

  auto *dst = ctx.template Output<Tensor>("Out");
  const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
50 51
  PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
                 "Input dim must be with 2 or 4");
52 53
  std::vector<int> src_tz = framework::vectorize2int(src->dims());

K
Krzysztof Binias 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  const std::string key = gethash(src_tz, algorithm);
  const std::string key_src_mem = key + "@eltwise_src_mem";
  const std::string key_dst_mem = key + "@eltwise_dst_mem";
  const std::string key_fwd = key + "@eltwise_fwd";

  std::shared_ptr<void> p_src_mem = dev_ctx.GetBlob(key_src_mem);
  std::shared_ptr<void> p_dst_mem = dev_ctx.GetBlob(key_dst_mem);
  std::shared_ptr<void> p_fwd = dev_ctx.GetBlob(key_fwd);

  if (p_src_mem == nullptr || p_dst_mem == nullptr || p_fwd == nullptr) {
    // create memory description
    auto data_md = src_tz.size() == 2
                       ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nc)
                       : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nchw);

    // create memory primitives
    p_src_mem = std::make_shared<mkldnn::memory>(
        mkldnn::memory({data_md, mkldnn_engine},
                       static_cast<void *>(const_cast<float *>(src_data))));
    dev_ctx.SetBlob(key_src_mem, p_src_mem);

    p_dst_mem = std::make_shared<mkldnn::memory>(
        mkldnn::memory({data_md, mkldnn_engine},
                       static_cast<void *>(const_cast<float *>(dst_data))));
    dev_ctx.SetBlob(key_dst_mem, p_dst_mem);

    auto fwd_desc = mkldnn::eltwise_forward::desc(
        mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
    auto p_fwd_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        fwd_desc, mkldnn_engine);
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(
        *(p_fwd_pd.get()), *(static_cast<mkldnn::memory *>(p_src_mem.get())),
        *(static_cast<mkldnn::memory *>(p_dst_mem.get())));
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
    std::static_pointer_cast<mkldnn::memory>(p_src_mem)->set_data_handle(
        reinterpret_cast<void *>(const_cast<T *>(src_data)));

    std::static_pointer_cast<mkldnn::memory>(p_dst_mem)->set_data_handle(
        reinterpret_cast<void *>(const_cast<T *>(dst_data)));
  }
97 98

  // push primitive to stream and wait until it's executed
K
Krzysztof Binias 已提交
99 100
  std::vector<mkldnn::primitive> pipeline = {
      *(static_cast<mkldnn::eltwise_forward::primitive *>(p_fwd.get()))};
101 102 103 104 105 106 107 108 109 110
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

template <typename T, typename ExecContext>
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
                  const T alpha = 0, const T beta = 0) {
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
K
Krzysztof Binias 已提交
111
  const auto *out = ctx.template Input<Tensor>("Out");
112 113 114 115 116 117 118 119 120

  auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
  const auto *diff_dst = dout->template data<T>();

  auto *dx =
      ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
  const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
K
Krzysztof Binias 已提交
121 122 123 124 125 126
  std::vector<int> src_tz = framework::vectorize2int(out->dims());

  const std::string key = gethash(src_tz, algorithm);
  const std::string key_src_mem = key + "@eltwise_src_mem";
  const std::string key_dst_mem = key + "@eltwise_dst_mem";
  const std::string key_fwd = key + "@eltwise_fwd";
127 128

  // create memory description
129
  auto data_md = src_tz.size() == 2
K
Krzysztof Binias 已提交
130 131 132 133
                     ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nc)
                     : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                               mkldnn::memory::format::nchw);
134

135
  // retrieve source memory from device context
K
Krzysztof Binias 已提交
136 137
  const std::shared_ptr<void> src_mem = dev_ctx.GetBlob(key_src_mem);
  auto *p_src_mem = static_cast<mkldnn::memory *>(src_mem.get());
138

139 140
  // create memory primitives
  auto diff_src_memory =
K
Krzysztof Binias 已提交
141 142
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(diff_src)));
143
  auto diff_dst_memory =
K
Krzysztof Binias 已提交
144 145
      mkldnn::memory({data_md, mkldnn_engine},
                     static_cast<void *>(const_cast<float *>(diff_dst)));
146 147 148 149 150

  auto backward_desc =
      mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);

  // retrieve eltwise primitive desc from device context
K
Krzysztof Binias 已提交
151
  const std::shared_ptr<void> forward_pd = dev_ctx.GetBlob(key_fwd);
152 153 154 155 156 157 158 159
  PADDLE_ENFORCE(forward_pd != nullptr,
                 "Fail to find eltwise_pd in device context");
  auto *p_forward_pd =
      static_cast<mkldnn::eltwise_forward::primitive_desc *>(forward_pd.get());

  auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
      backward_desc, mkldnn_engine, *p_forward_pd);

K
Krzysztof Binias 已提交
160 161
  auto eltwise_bwd = mkldnn::eltwise_backward(eltwise_bwd_prim_desc, *p_src_mem,
                                              diff_dst_memory, diff_src_memory);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

  // push primitive to stream and wait until it's executed
  std::vector<mkldnn::primitive> pipeline = {eltwise_bwd};
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}  // anonymous namespace

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
using ReluMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
using ReluMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
228 229 230 231 232
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
  __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \
  __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \
  __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \
  __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
233 234

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);