lstm_op.cc 12.0 KB
Newer Older
D
dangqingqing 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

D
dangqingqing 已提交
15
#include "paddle/operators/lstm_op.h"
D
dangqingqing 已提交
16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
27 28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
32 33
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
34
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
35
                   "Output(Cell) of LSTM should not be null.");
36 37 38 39
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
40

D
dangqingqing 已提交
41 42
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
43 44 45 46 47 48 49 50 51 52 53 54

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
55
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
56 57 58 59 60 61 62 63 64 65 66
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
67

D
dangqingqing 已提交
68 69 70 71
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
72 73

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
74 75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
81
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
82 83
                        frame_size);
    }
84

D
dangqingqing 已提交
85 86 87 88 89
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
90 91 92
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
93 94 95 96 97 98 99

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
100 101 102 103 104 105 106 107 108
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
109
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
110 111 112 113
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
114 115
             "batch size, D is the hidden size.")
        .AsDispensable();
D
dangqingqing 已提交
116 117 118
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
119 120
             "batch size. `H0` and `C0` can be NULL but only at the same time")
        .AsDispensable();
D
dangqingqing 已提交
121 122
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
123 124
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
125 126 127
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
128 129
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
130 131
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
132
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
133
             " - The shape is (1 x 7D). "
134
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
135
    AddOutput("Hidden",
D
dangqingqing 已提交
136 137
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
138
    AddOutput("Cell",
D
dangqingqing 已提交
139 140
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
141 142
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
143
              "and output gate after the nonlinear computation. This "
144
              "LoDTensor has the same shape with the reorganized input, which "
D
dangqingqing 已提交
145
              "is also be called batch input. The LoD size is 2. The first "
146 147 148
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
149
        .AsIntermediate();
D
dangqingqing 已提交
150
    AddOutput("BatchCellPreAct",
D
dangqingqing 已提交
151
              "(LoDTensor) This LoDTensor is got in the forward and used "
D
dangqingqing 已提交
152 153
              "in the backward.")
        .AsIntermediate();
154
    AddAttr<bool>("use_peepholes",
D
dangqingqing 已提交
155 156 157
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
158
    AddAttr<bool>("is_reverse",
D
dangqingqing 已提交
159 160
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
161
        .SetDefault(false);
D
dangqingqing 已提交
162
    AddAttr<std::string>(
163
        "gate_activation",
Y
Yu Yang 已提交
164
        "(string, default: sigmoid)"
D
dangqingqing 已提交
165
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
166
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
167
        .SetDefault("sigmoid");
168
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
169
                         "(string, default: tanh)"
D
dangqingqing 已提交
170 171
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh");
172
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
173
                         "(string, default: tanh)"
D
dangqingqing 已提交
174
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
175
                         "`tanh` by default.")
D
dangqingqing 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        .SetDefault("tanh");
    AddComment(R"DOC(Long-Short Term Memory (LSTM) Operator

The defalut implementation is diagonal/peephole connection [1], the formula is
as follows

    i_t = \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i)

    f_t = \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f)

    \tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

    o_t = \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o)

    c_t = f_t ⊙ c_{t-1} + i_t ⊙ \tilde{c_t}

    h_t = o_t ⊙ act_h(c_t)

where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix
of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$
are diagonal weight matrices for peephole connections. In our implenmention,
We use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$
is the non-line actications, such as logistic sigmoid function, and
\f$i, f, o\f$ and \f$c\f$ are respectively the input gate, forget gate,
output gate and cell activation vectors, all of which are the same size as
the cell output activation vector \f$h\f$.

The ⊙ is the element-wise product of the vectors, \f$act_g\f$ and \f$act_h\f$
are the cell input and cell output activation functions, `tanh` is usually
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.

209
Set `use_peepholes` False to disable peephole connection [2]. The formula
D
dangqingqing 已提交
210 211 212
is omitted here.

@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
D
dangqingqing 已提交
213 214
operations on the input x_{t} were NOT included in this operator.
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

[1] Hasim Sak, Andrew Senior, and Francoise Beaufays. Long short-term memory
recurrent neural network architectures for large scale acoustic modeling.
INTERSPEECH, 2014.

[2] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, 1997.

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

231
  void InferShape(framework::InferShapeContext* ctx) const override {
232 233 234 235 236 237
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
238 239 240 241
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

    auto in_g_name = framework::GradVarName("Input");
    if (ctx->HasOutput(in_g_name))
      ctx->SetOutputDim(in_g_name, ctx->GetInputDim("Input"));

    auto w_g_name = framework::GradVarName("Weight");
    if (ctx->HasOutput(w_g_name))
      ctx->SetOutputDim(w_g_name, ctx->GetInputDim("Weight"));

    auto b_g_name = framework::GradVarName("Bias");
    if (ctx->HasOutput(b_g_name))
      ctx->SetOutputDim(b_g_name, ctx->GetInputDim("Bias"));
259 260 261 262 263 264 265 266

    auto h0_g_name = framework::GradVarName("H0");
    if (ctx->HasOutput(h0_g_name))
      ctx->SetOutputDim(h0_g_name, ctx->GetInputDim("H0"));

    auto c0_g_name = framework::GradVarName("C0");
    if (ctx->HasOutput(c0_g_name))
      ctx->SetOutputDim(c0_g_name, ctx->GetInputDim("C0"));
D
dangqingqing 已提交
267
  }
268 269 270 271 272 273 274

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext& ctx) const override {
    return framework::ToDataType(
        ctx.Input<framework::LoDTensor>("Input")->type());
  }
D
dangqingqing 已提交
275 276 277 278 279 280 281 282 283 284 285 286
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp);
REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(lstm_grad,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, float>,
                       ops::LSTMGradKernel<paddle::platform::CPUPlace, double>);