test_collective_base.py 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
26
import tempfile
27 28 29 30 31 32 33
from contextlib import closing
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveRunnerBase(object):
34

35 36 37 38 39 40 41 42 43 44
    def get_model(self, train_prog, startup_prog):
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def wait_server_ready(self, endpoints):
        while True:
            all_ok = True
            not_ready_endpoints = []
            for ep in endpoints:
                ip_port = ep.split(":")
45 46
                with closing(socket.socket(socket.AF_INET,
                                           socket.SOCK_STREAM)) as sock:
47
                    sock.settimeout(2)
48 49 50 51 52
                    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                    if hasattr(socket, 'SO_REUSEPORT'):
                        sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT,
                                        1)

53 54 55 56 57 58
                    result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                    if result != 0:
                        all_ok = False
                        not_ready_endpoints.append(ep)
            if not all_ok:
                sys.stderr.write("server not ready, wait 3 sec to retry...\n")
59 60
                sys.stderr.write("not ready endpoints:" +
                                 str(not_ready_endpoints) + "\n")
61 62 63 64 65
                sys.stderr.flush()
                time.sleep(3)
            else:
                break

66

67 68 69 70 71 72 73 74 75
#endpoints should be ["ip1:port1","ip2:port2"]

    def initCommunicator(self, program, rank, nranks, wait_port,
                         current_endpoint, endpoints):
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            self.wait_server_ready(other_endpoints)
        block = program.global_block()
76 77 78
        nccl_id_var = block.create_var(name=nameGen.generate('nccl_id'),
                                       persistable=True,
                                       type=core.VarDesc.VarType.RAW)
79

80 81 82 83 84 85 86 87
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
88

89 90 91 92 93 94 95 96
        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': self.global_ring_id
                        })
97 98 99 100 101 102 103 104 105 106

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        self.initCommunicator(startup_prog, rank, nranks, True,
                              current_endpoint, endpoints)
L
lilong12 已提交
107
        self.rank = rank
108 109 110 111 112 113 114 115 116 117 118
        result = self.get_model(train_prog, startup_prog)
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(
            device_id)  #if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        np.random.seed(os.getpid())
        indata = np.random.random((10, 1000))
        out = exe.run(train_prog,
                      feed={'tindata': indata},
                      fetch_list=[result.name])
T
tianshuo78520a 已提交
119
        sys.stdout.buffer.write(pickle.dumps(out))
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


def runtime_main(test_class, col_type, sub_type):
    args = {}
    model = test_class()
    args["deviceid"] = os.getenv("FLAGS_selected_gpus")
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
140

141 142 143 144 145 146 147
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

148 149 150 151 152
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

153
    def _find_free_port(self):
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
        env0 = {
172
            "FLAGS_selected_gpus": "0",
173 174 175 176 177 178 179
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w0_ep
        }

        env1 = {
180
            "FLAGS_selected_gpus": "1",
181 182 183 184 185 186 187 188 189 190 191
            "PADDLE_TRAINER_ID": "1",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w1_ep
        }
        #update environment
        env0.update(envs)
        env1.update(envs)
        tr_cmd = "%s %s"
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
192 193 194 195
        path0 = os.path.join(self.temp_dir.name, "/tmp/tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, "/tmp/tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
196 197 198 199 200
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)
201

202 203 204 205
        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
229
            "GLOG_v": "3",
230 231 232 233 234 235
            "NCCL_P2P_DISABLE": "1"
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
236 237
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
238 239 240 241 242 243 244 245 246 247 248 249
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "broadcast":
            need_result = input2
            self.assertTrue(np.allclose(tr0_out, need_result))
            self.assertTrue(np.allclose(tr1_out, need_result))
L
lilong12 已提交
250 251 252 253 254 255 256 257 258
        elif col_type == "reduce":
            need_result = input1 + input2
            self.assertTrue(np.allclose(tr1_out, need_result))
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
259 260 261
        elif col_type == "allreduce":
            need_result = input1 + input2
            self.assertTrue(
262
                np.allclose(tr0_out, need_result, rtol=1e-05, atol=1e-05))
263
            self.assertTrue(
264
                np.allclose(tr1_out, need_result, rtol=1e-05, atol=1e-05))
265 266 267 268 269
        elif col_type == "reduce_scatter":
            tmp = input1 + input2
            need_result1 = tmp[0:tmp.shape[0] // 2]
            need_result2 = tmp[tmp.shape[0] // 2:]
            self.assertTrue(
270
                np.allclose(tr0_out, need_result1, rtol=1e-05, atol=1e-05))
271
            self.assertTrue(
272
                np.allclose(tr1_out, need_result2, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
273 274 275
        elif col_type == "sendrecv":
            need_result = input1
            self.assertTrue(
276
                np.allclose(tr1_out, need_result, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
277 278 279 280 281
        elif col_type == "identity":
            need_result1 = input1
            need_result2 = input2
            self.assertTrue(np.allclose(tr0_out, need_result1, rtol=0, atol=0))
            self.assertTrue(np.allclose(tr1_out, need_result2, rtol=0, atol=0))
282 283 284 285 286 287 288 289 290 291
        elif col_type == "reduce_slicegather":
            slicesize = input1.shape[0] // 2
            tmp10 = input1[0:slicesize]
            tmp11 = input2[0:slicesize]
            need_result1 = np.concatenate((tmp10, tmp11), axis=1)
            tmp20 = input1[slicesize:]
            tmp21 = input2[slicesize:]
            need_result2 = np.concatenate((tmp20, tmp21), axis=1)
            self.assertTrue(np.allclose(tr0_out, need_result1))
            self.assertTrue(np.allclose(tr1_out, need_result2))
L
lilong12 已提交
292 293 294
        elif col_type == "concat":
            need_result = np.concatenate((input1, input2), axis=1)
            self.assertTrue(
295
                np.allclose(tr0_out, need_result, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
296
            self.assertTrue(
297
                np.allclose(tr1_out, need_result, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
298 299 300 301
        elif col_type == "split":
            need_result1 = np.split(input1, 2, axis=1)[0]
            need_result2 = np.split(input2, 2, axis=1)[1]
            self.assertTrue(
302
                np.allclose(tr0_out, need_result1, rtol=1e-05, atol=1e-05))
L
lilong12 已提交
303
            self.assertTrue(
304
                np.allclose(tr1_out, need_result2, rtol=1e-05, atol=1e-05))
305 306 307 308
        elif col_type == "sendrecv_array":
            need_result1 = np.array([[0, 1, 2]])
            need_result2 = np.array([[3, 4, 5]])
            self.assertTrue(
309 310
                np.allclose(tr1_out[0][0], need_result1, rtol=1e-05,
                            atol=1e-05))
311
            self.assertTrue(
312 313
                np.allclose(tr1_out[0][1], need_result2, rtol=1e-05,
                            atol=1e-05))
314 315
        else:
            pass