uniform_random_op.h 1.5 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
Y
Yu Yang 已提交
16 17
#include <random>
#include <type_traits>
Y
Yu Yang 已提交
18 19 20 21
#include "paddle/operators/type_alias.h"
namespace paddle {
namespace operators {

Y
Yu Yang 已提交
22 23
template <typename T>
class CPUUniformRandomKernel : public OpKernel {
Y
Yu Yang 已提交
24
 public:
Y
Yu Yang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
  void Compute(const ExecutionContext& context) const override {
    auto* tensor = context.Output<Tensor>(0);
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed =
        static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(static_cast<T>(context.op_.GetAttr<float>("min")),
                                           static_cast<T>(context.op_.GetAttr<float>("max")));
    for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
      data[i] = dist(engine);
    }
Y
Yu Yang 已提交
40 41 42 43 44
  }
};

}  // namespace operators
}  // namespace paddle