sequence_concat_op.cc 5.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yancey1989 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_concat_op.h"
16
#include <memory>
C
chengduoZH 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21

namespace paddle {
namespace operators {

C
chengduoZH 已提交
22
class SeqConcatOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yancey1989 已提交
23
 public:
C
chengduoZH 已提交
24 25 26 27 28 29 30 31 32 33 34
  void Make() override {
    AddInput("X", "The inputs of sequence concat op").AsDuplicable();
    AddOutput("Out", "The output of sequence concat op");
    AddComment(
        "Sequence Concat Op\n"
        "It will concat LoD tensors by its sequence information.\n"
        "For example:\n"
        "  LoD of X1 = [0, 3, 7]\n"
        "  LoD of X2 = [0, 7, 9]\n"
        "  Result LoD is [0, (3+7), (7+9)]\n"
        "            i.e.[0, 10, 16]\n");
Y
Yancey1989 已提交
35 36 37
  }
};

Z
Zeng Jinle 已提交
38
class SequenceConcatOp : public framework::OperatorWithKernel {
Y
Yancey1989 已提交
39
 public:
Z
Zeng Jinle 已提交
40 41 42 43
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext *context) const override {
44 45 46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        context->HasInputs("X"), true,
        platform::errors::NotFound("SequenceConcatOp Input(X) of Sequence "
                                   "Concat Op should not be null."));
    PADDLE_ENFORCE_EQ(
        context->HasOutput("Out"), true,
        platform::errors::NotFound("SequenceConcatOp Output(Out) of Sequence "
                                   "Concat Op should not be null."));
C
chengduoZH 已提交
52

C
chengduoZH 已提交
53
    PADDLE_ENFORCE_GT(context->Inputs("X").size(), 1,
54 55 56 57 58
                      platform::errors::InvalidArgument(
                          "The number of SequenceConcatOp inputs should be "
                          "greater than 1. But "
                          "the number of inputs we received is %d",
                          context->Inputs("X").size()));
C
chengduoZH 已提交
59 60 61 62 63 64 65
    auto x_dims = context->GetInputsDim("X");
    int64_t batch_size = 0;
    int64_t feature_size = 0;
    std::vector<int64_t> out_dims;
    for (auto &x_dim : x_dims) {
      if (out_dims.empty()) {
        out_dims = framework::vectorize(x_dim);
C
chengduoZH 已提交
66
      }
C
chengduoZH 已提交
67 68 69 70 71 72
      batch_size += x_dim[0];
      if (feature_size == 0) {
        feature_size = framework::product(x_dim) / x_dim[0];
      } else {
        PADDLE_ENFORCE_EQ(
            feature_size, framework::product(x_dim) / x_dim[0],
73 74 75 76 77 78
            platform::errors::InvalidArgument(
                "Each input of SequenceConcatOp inputs must have same feature "
                "size, But "
                "the feature size we received is %d, the feature size of 1st "
                "input is %d",
                feature_size, framework::product(x_dim) / x_dim[0]));
C
chengduoZH 已提交
79
      }
C
chengduoZH 已提交
80 81 82 83 84 85 86 87 88
    }
    if (batch_size < 0) {
      batch_size = -1;  // Normalize batch size for compile time.
    }
    out_dims[0] = batch_size;
    context->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (!context->IsRuntime()) {  // Runtime LoD infershape will be computed
      // in Kernel.
      context->ShareLoD("X", "Out");
C
chengduoZH 已提交
89
    }
Y
Yancey1989 已提交
90 91 92
  }
};

H
hong 已提交
93 94
template <typename T>
class SeqConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
Y
Yancey1989 已提交
95
 public:
H
hong 已提交
96
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
97 98

 protected:
99
  void Apply(GradOpPtr<T> op) const override {
100
    op->SetType("sequence_concat_grad");
H
hong 已提交
101 102 103 104
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
105 106 107 108 109 110 111 112
  }
};

class SeqConcatGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
C
chengduoZH 已提交
113 114
    context->SetOutputsDim(framework::GradVarName("X"),
                           context->GetInputsDim("X"));
Y
Yancey1989 已提交
115
  }
116 117 118 119

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
120 121 122
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
123
  }
Y
Yancey1989 已提交
124
};
125

126
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SeqConcatGradNoNeedBufferVarsInferer, "X");
127

Y
Yancey1989 已提交
128 129 130
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
131 132
namespace op = paddle::operators;

Z
Zeng Jinle 已提交
133
REGISTER_OPERATOR(sequence_concat, op::SequenceConcatOp, op::SeqConcatOpMaker,
H
hong 已提交
134 135
                  op::SeqConcatGradOpMaker<paddle::framework::OpDesc>,
                  op::SeqConcatGradOpMaker<paddle::imperative::OpBase>);
C
chengduoZH 已提交
136 137
template <typename T>
using Kernel = op::SeqConcatKernel<paddle::platform::CPUDeviceContext, T>;
M
minqiyang 已提交
138
REGISTER_OP_CPU_KERNEL(sequence_concat, Kernel<float>, Kernel<double>,
139
                       Kernel<int>, Kernel<int64_t>);
M
minqiyang 已提交
140

141
REGISTER_OPERATOR(sequence_concat_grad, op::SeqConcatGradOp,
142
                  op::SeqConcatGradNoNeedBufferVarsInferer);
C
chengduoZH 已提交
143 144 145 146
template <typename T>
using GradKernel =
    op::SeqConcatGradKernel<paddle::platform::CPUDeviceContext, T>;
REGISTER_OP_CPU_KERNEL(sequence_concat_grad, GradKernel<float>,
147 148
                       GradKernel<double>, GradKernel<int>,
                       GradKernel<int64_t>);