test_tile_op.py 7.9 KB
Newer Older
L
lilong12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard


H
hong 已提交
25
#Situation 1: repeat_times is a list (without tensor)
L
lilong12 已提交
26 27 28 29
class TestTileOpRank1(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()
P
phlrain 已提交
30
        self.python_api = paddle.tile
L
lilong12 已提交
31 32 33 34 35 36 37 38 39 40 41

        self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")}
        self.attrs = {'repeat_times': self.repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
P
phlrain 已提交
42
        self.check_output(check_eager=True)
L
lilong12 已提交
43 44

    def test_check_grad(self):
P
phlrain 已提交
45
        self.check_grad(['X'], 'Out', check_eager=True)
L
lilong12 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


# with dimension expanding
class TestTileOpRank2Expanding(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [120]
        self.repeat_times = [2, 2]


class TestTileOpRank2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


class TestTileOpRank3_Corner(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (1, 1, 1)


class TestTileOpRank3_Corner2(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 10, 5)
        self.repeat_times = (2, 2)


class TestTileOpRank3(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 15)
        self.repeat_times = (2, 1, 4)


class TestTileOpRank4(TestTileOpRank1):
    def init_data(self):
        self.ori_shape = (2, 4, 5, 7)
        self.repeat_times = (3, 2, 1, 2)


L
lilong12 已提交
85
# Situation 2: repeat_times is a list (with tensor)
L
lilong12 已提交
86 87 88
class TestTileOpRank1_tensor_attr(OpTest):
    def setUp(self):
        self.op_type = "tile"
P
phlrain 已提交
89
        self.python_api = paddle.tile
L
lilong12 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        self.init_data()
        repeat_times_tensor = []
        for index, ele in enumerate(self.repeat_times):
            repeat_times_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'repeat_times_tensor': repeat_times_tensor,
        }
        self.attrs = {"repeat_times": self.infer_repeat_times}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]
        self.infer_repeat_times = [-1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [1, 1]
        self.infer_repeat_times = [1, -1]


class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]
        self.infer_repeat_times = [-1, 3]


# Situation 3: repeat_times is a tensor
class TestTileOpRank1_tensor(OpTest):
    def setUp(self):
        self.op_type = "tile"
        self.init_data()

        self.inputs = {
            'X': np.random.random(self.ori_shape).astype("float64"),
            'RepeatTimes': np.array(self.repeat_times).astype("int32"),
        }
        self.attrs = {}
        output = np.tile(self.inputs['X'], self.repeat_times)
        self.outputs = {'Out': output}

    def init_data(self):
        self.ori_shape = [100]
        self.repeat_times = [2]

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestTileOpRank2_tensor(TestTileOpRank1_tensor):
    def init_data(self):
        self.ori_shape = [12, 14]
        self.repeat_times = [2, 3]


# Situation 4: input x is Integer
class TestTileOpInteger(OpTest):
    def setUp(self):
        self.op_type = "tile"
P
phlrain 已提交
165
        self.python_api = paddle.tile
L
lilong12 已提交
166 167
        self.inputs = {
            'X': np.random.randint(
L
lilong12 已提交
168
                10, size=(4, 4, 5)).astype("int32")
L
lilong12 已提交
169 170 171 172 173 174
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
P
phlrain 已提交
175
        self.check_output(check_eager=True)
L
lilong12 已提交
176 177 178 179 180 181


# Situation 5: input x is Bool
class TestTileOpBoolean(OpTest):
    def setUp(self):
        self.op_type = "tile"
P
phlrain 已提交
182
        self.python_api = paddle.tile
L
lilong12 已提交
183 184 185 186 187 188
        self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")}
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
P
phlrain 已提交
189
        self.check_output(check_eager=True)
L
lilong12 已提交
190 191 192 193 194 195


# Situation 56: input x is Integer
class TestTileOpInt64_t(OpTest):
    def setUp(self):
        self.op_type = "tile"
P
phlrain 已提交
196
        self.python_api = paddle.tile
L
lilong12 已提交
197 198 199 200 201 202 203 204 205
        self.inputs = {
            'X': np.random.randint(
                10, size=(2, 4, 5)).astype("int64")
        }
        self.attrs = {'repeat_times': [2, 1, 4]}
        output = np.tile(self.inputs['X'], (2, 1, 4))
        self.outputs = {'Out': output}

    def test_check_output(self):
P
phlrain 已提交
206
        self.check_output(check_eager=True)
L
lilong12 已提交
207 208 209 210 211 212 213 214 215 216 217 218


class TestTileError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            repeat_times = [2, 2]
            self.assertRaises(TypeError, paddle.tile, x1, repeat_times)
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8")
            self.assertRaises(TypeError, paddle.tile, x2, repeat_times)
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="bool")
L
lilong12 已提交
219
            x3.stop_gradient = False
L
lilong12 已提交
220 221 222
            self.assertRaises(ValueError, paddle.tile, x3, repeat_times)


223 224 225 226 227 228 229 230 231 232
class TestTileAPIStatic(unittest.TestCase):
    def test_api(self):
        with program_guard(Program(), Program()):
            repeat_times = [2, 2]
            x1 = fluid.layers.data(name='x1', shape=[4], dtype="int32")
            out = paddle.tile(x1, repeat_times)
            positive_2 = fluid.layers.fill_constant([1], dtype="int32", value=2)
            out2 = paddle.tile(x1, repeat_times=[positive_2, 2])


L
lilong12 已提交
233 234 235
# Test python API
class TestTileAPI(unittest.TestCase):
    def test_api(self):
L
lilong12 已提交
236 237
        with fluid.dygraph.guard():
            np_x = np.random.random([12, 14]).astype("float32")
238
            x = paddle.to_tensor(np_x)
L
lilong12 已提交
239 240

            positive_2 = np.array([2]).astype("int32")
241
            positive_2 = paddle.to_tensor(positive_2)
L
lilong12 已提交
242 243

            repeat_times = np.array([2, 3]).astype("int32")
244
            repeat_times = paddle.to_tensor(repeat_times)
L
lilong12 已提交
245 246 247 248 249 250 251 252

            out_1 = paddle.tile(x, repeat_times=[2, 3])
            out_2 = paddle.tile(x, repeat_times=[positive_2, 3])
            out_3 = paddle.tile(x, repeat_times=repeat_times)

            assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3)))
            assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3)))
L
lilong12 已提交
253 254 255


if __name__ == "__main__":
P
phlrain 已提交
256
    paddle.enable_static()
L
lilong12 已提交
257
    unittest.main()