gather.cu.h 5.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16 17 18
#include <vector>
#include "paddle/fluid/framework/dim.h"
#include "paddle/fluid/framework/operator.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/tensor.h"
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/place.h"
Z
zchen0211 已提交
23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;
Q
QI JUN 已提交
28
using platform::DeviceContext;
Z
zchen0211 已提交
29

30 31 32 33
template <typename T, typename IndexT = int>
__global__ void GatherCUDAKernel(const T* params, const IndexT* indices,
                                 T* output, size_t index_size,
                                 size_t slice_size) {
34
  CUDA_KERNEL_LOOP(i, index_size * slice_size) {
Z
zchen0211 已提交
35 36
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
37 38
    IndexT gather_i = indices[indices_i];
    IndexT params_i = gather_i * slice_size + slice_i;
Z
zchen0211 已提交
39 40 41 42
    *(output + i) = *(params + params_i);
  }
}

43 44 45 46 47
template <typename T, typename IndexT = int>
__global__ void GatherNdCUDAKernel(const T* input, const int* input_dims,
                                   const IndexT* indices, T* output,
                                   size_t remain_size, size_t slice_size,
                                   size_t end_size) {
48
  CUDA_KERNEL_LOOP(i, remain_size * slice_size) {
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = 0;
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      auto index_value = indices[indices_i * end_size + j];
      assert(index_value >= 0 && index_value < input_dims[j]);
      gather_i += (index_value * temp);
      temp *= input_dims[j];
    }
    IndexT input_i = gather_i + slice_i;
    *(output + i) = *(input + input_i);
  }
}

Z
zchen0211 已提交
64 65 66 67
/**
 * A thin wrapper on gpu tensor
 * Return a new tensor from source tensor, gathered according to index
 * input[src]: type-T source Tensor
68
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
69 70
 * return: output tensor
 */
71
template <typename T, typename IndexT = int>
72 73
void GPUGather(const platform::DeviceContext& ctx, const Tensor& src,
               const Tensor& index, Tensor* output) {
Z
zchen0211 已提交
74
  // check index of shape 1-D
C
chengduo 已提交
75 76
  if (index.dims().size() == 1) {
    PADDLE_ENFORCE_GT(index.dims()[0], 0,
77 78 79
                      platform::errors::InvalidArgument(
                          "The index of gather_op should not be empty"
                          "when the index's rank is 1."));
C
chengduo 已提交
80 81
  } else if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
82 83 84
                      platform::errors::InvalidArgument(
                          "If the index's rank of gather_op is 2,"
                          " the second dimension should be 1."));
C
chengduo 已提交
85
  }
Y
Yibing Liu 已提交
86

87
  int index_size = index.dims()[0];
Z
zchen0211 已提交
88

89
  auto src_dims = src.dims();
Z
zchen0211 已提交
90 91 92 93 94 95 96
  framework::DDim output_dims(src_dims);
  output_dims[0] = index_size;

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

97
  const T* p_src = src.data<T>();
98
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
99 100 101 102 103
  T* p_output = output->data<T>();

  int block = 512;
  int n = slice_size * index_size;
  int grid = (n + block - 1) / block;
Z
zchen0211 已提交
104

105
  GatherCUDAKernel<T, IndexT><<<
Z
zchen0211 已提交
106 107 108
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_src, p_index, p_output, index_size, slice_size);
Z
zchen0211 已提交
109 110
}

111 112 113 114
template <typename DeviceContext, typename T, typename IndexT = int>
void GPUGatherNd(const framework::ExecutionContext& context,
                 const Tensor& input, const Tensor& index, Tensor* output) {
  const auto& ctx = context.template device_context<DeviceContext>();
115
  const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  auto cplace = platform::CPUPlace();

  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();
  auto input_dims = input.dims();
  auto input_dims_size = input_dims.size();

  const T* p_input = input.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < input_dims_size; ++i) {
    slice_size *= input_dims[i];
  }
  // source dim
  std::vector<int> v_input_dims(input_dims_size);
  for (int i = 0; i < input_dims_size; ++i) {
    v_input_dims[i] = static_cast<int>(input_dims[i]);
  }

  auto& dev_ctx = context.cuda_device_context();
  int bytes = input_dims_size * sizeof(int);
145
  auto p_input_dims = memory::Alloc(dev_ctx, bytes);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  int* g_input_dims = reinterpret_cast<int*>(p_input_dims->ptr());
  memory::Copy(gplace, g_input_dims, cplace, v_input_dims.data(), bytes,
               ctx.stream());

  int block = 512;
  int n = slice_size * remain_numel;
  int grid = (n + block - 1) / block;

  GatherNdCUDAKernel<T, IndexT><<<
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_input, g_input_dims, p_index, p_output, remain_numel, slice_size,
      end_size);
}

Z
zchen0211 已提交
161 162
}  // namespace operators
}  // namespace paddle