box_wrapper.cu 11.0 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifdef PADDLE_WITH_BOX_PS
#include <algorithm>
#include <ctime>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/fleet/box_wrapper.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace framework {

S
ShenLiang 已提交
27 28 29 30 31 32
template <size_t EMBEDX_DIM, size_t EXPAND_EMBED_DIM>
__global__ void PullCopy(
    float** dest,
    const boxps::FeatureValueGpu<EMBEDX_DIM, EXPAND_EMBED_DIM>* src,
    const int64_t* len, int hidden, int expand_dim, int slot_num, int total_len,
    uint64_t** keys) {
H
hutuxian 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    if (*(keys[x] + y) == 0) {
      *(dest[x] + y * hidden) = 0;
      *(dest[x] + y * hidden + 1) = 0;
      *(dest[x] + y * hidden + 2) = 0;
    } else {
      *(dest[x] + y * hidden) = (src + i)->show;
      *(dest[x] + y * hidden + 1) = (src + i)->clk;
      *(dest[x] + y * hidden + 2) = (src + i)->embed_w;
    }
    if ((src + i)->embedding_size == 0 || *(keys[x] + y) == 0) {
S
ShenLiang 已提交
55
      for (int j = 0; j < hidden - 3; j++) {
H
hutuxian 已提交
56 57 58
        *(dest[x] + y * hidden + 3 + j) = 0;
      }
    } else {
S
ShenLiang 已提交
59
      for (int j = 0; j < hidden - 3; j++) {
H
hutuxian 已提交
60 61 62
        *(dest[x] + y * hidden + 3 + j) = (src + i)->embedx[1 + j];
      }
    }
S
ShenLiang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76
    // process embed_expand
    if (expand_dim > 0) {
      int z = x + slot_num;
      if ((src + i)->embed_expand_size[0] == 0 || *(keys[x] + y) == 0) {
        for (int j = 0; j < expand_dim; j++) {
          *(dest[z] + y * expand_dim + j) = 0;
        }
      } else {
        for (int j = 0; j < expand_dim; j++) {
          *(dest[z] + y * expand_dim + j) = (src + i)->embed_expand[1 + j];
        }
      }
    }
  }  // end kernel loop
H
hutuxian 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
}

__global__ void CopyKeysKernel(uint64_t** src_keys, uint64_t* dest_total_keys,
                               const int64_t* len, int slot_num,
                               int total_len) {
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[x - 1] : 0);
    dest_total_keys[i] = src_keys[x][y];
  }
}

S
ShenLiang 已提交
98 99 100 101 102
template <size_t EMBEDX_DIM, size_t EXPAND_EMBED_DIM>
__global__ void PushCopy(
    boxps::FeaturePushValueGpu<EMBEDX_DIM, EXPAND_EMBED_DIM>* dest, float** src,
    int64_t* len, int hidden, int expand_dim, int slot_num, int total_len,
    int bs, int* slot_vector) {
H
hutuxian 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  CUDA_KERNEL_LOOP(i, total_len) {
    int low = 0;
    int high = slot_num - 1;
    while (low < high) {
      int mid = (low + high) / 2;
      if (i < len[mid])
        high = mid;
      else
        low = mid + 1;
    }
    int x = low;
    int y = i - (x ? len[low - 1] : 0);
    (dest + i)->slot = slot_vector[x];
    (dest + i)->show = *(src[x] + y * hidden);
    (dest + i)->clk = *(src[x] + y * hidden + 1);
    (dest + i)->embed_g = *(src[x] + y * hidden + 2) * -1. * bs;
S
ShenLiang 已提交
119
    for (int j = 0; j < hidden - 3; j++) {
H
hutuxian 已提交
120 121
      (dest + i)->embedx_g[j] = *(src[x] + y * hidden + 3 + j) * -1. * bs;
    }
S
ShenLiang 已提交
122 123 124 125 126 127 128
    if (expand_dim > 0) {
      int z = x + slot_num;
      for (int j = 0; j < expand_dim; j++) {
        (dest + i)->embed_expand_g[j] =
            *(src[z] + y * expand_dim + j) * -1. * bs;
      }
    }
H
hutuxian 已提交
129 130 131 132 133 134
  }
}

void BoxWrapper::CopyForPull(const paddle::platform::Place& place,
                             uint64_t** gpu_keys,
                             const std::vector<float*>& values,
S
ShenLiang 已提交
135 136 137
                             void* total_values_gpu, const int64_t* gpu_len,
                             const int slot_num, const int hidden_size,
                             const int expand_embed_dim,
H
hutuxian 已提交
138 139 140
                             const int64_t total_length) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
141
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
142 143 144 145 146
                    ->stream();
  auto buf_value = memory::AllocShared(place, values.size() * sizeof(float*));
  float** gpu_values = reinterpret_cast<float**>(buf_value->ptr());
  cudaMemcpy(gpu_values, values.data(), values.size() * sizeof(float*),
             cudaMemcpyHostToDevice);
S
ShenLiang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#define EMBEDX_CASE(i, ...)                                                  \
  case i: {                                                                  \
    constexpr size_t EmbedxDim = i;                                          \
    switch (expand_embed_dim) {                                              \
      __VA_ARGS__                                                            \
      default:                                                               \
        PADDLE_THROW(platform::errors::InvalidArgument(                      \
            "Unsupport this expand embedding size [%d]", expand_embed_dim)); \
    }                                                                        \
  } break

#define EXPAND_EMBED_PULL_CASE(i, ...)                                       \
  case i: {                                                                  \
    constexpr size_t ExpandDim = i;                                          \
    PullCopy<EmbedxDim,                                                      \
             ExpandDim><<<(total_length + 512 - 1) / 512, 512, 0, stream>>>( \
        gpu_values,                                                          \
        reinterpret_cast<boxps::FeatureValueGpu<EmbedxDim, ExpandDim>*>(     \
            total_values_gpu),                                               \
        gpu_len, hidden_size, expand_embed_dim, slot_num, total_length,      \
        gpu_keys);                                                           \
  } break
H
hutuxian 已提交
169

S
ShenLiang 已提交
170 171 172 173 174 175 176 177
  switch (hidden_size - 3) {
    EMBEDX_CASE(8, EXPAND_EMBED_PULL_CASE(0); EXPAND_EMBED_PULL_CASE(8);
                EXPAND_EMBED_PULL_CASE(64););
    EMBEDX_CASE(16, EXPAND_EMBED_PULL_CASE(0););
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupport this embedding size [%d]", hidden_size - 3));
  }
H
hutuxian 已提交
178
  cudaStreamSynchronize(stream);
S
ShenLiang 已提交
179 180
#undef EXPAND_EMBED_PULL_CASE
#undef EMBEDX_CASE
H
hutuxian 已提交
181 182 183 184 185 186 187
}

void BoxWrapper::CopyKeys(const paddle::platform::Place& place,
                          uint64_t** origin_keys, uint64_t* total_keys,
                          const int64_t* gpu_len, int slot_num, int total_len) {
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
188
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
189 190 191 192 193 194 195 196
                    ->stream();
  CopyKeysKernel<<<(total_len + 512 - 1) / 512, 512, 0, stream>>>(
      origin_keys, total_keys, gpu_len, slot_num, total_len);
  cudaStreamSynchronize(stream);
}

void BoxWrapper::CopyForPush(const paddle::platform::Place& place,
                             const std::vector<const float*>& grad_values,
S
ShenLiang 已提交
197
                             void* total_grad_values_gpu,
H
hutuxian 已提交
198
                             const std::vector<int64_t>& slot_lengths,
S
ShenLiang 已提交
199 200
                             const int hidden_size, const int expand_embed_dim,
                             const int64_t total_length, const int batch_size) {
H
hutuxian 已提交
201 202
  auto stream = dynamic_cast<platform::CUDADeviceContext*>(
                    platform::DeviceContextPool::Instance().Get(
203
                        BOOST_GET_CONST(platform::CUDAPlace, place)))
H
hutuxian 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                    ->stream();
  auto slot_lengths_lod = slot_lengths;
  for (int i = 1; i < slot_lengths_lod.size(); i++) {
    slot_lengths_lod[i] += slot_lengths_lod[i - 1];
  }
  auto buf_grad_value =
      memory::AllocShared(place, grad_values.size() * sizeof(float*));
  auto buf_length =
      memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
  auto buf_slot_vector =
      memory::AllocShared(place, slot_lengths_lod.size() * sizeof(int));

  float** gpu_values = reinterpret_cast<float**>(buf_grad_value->ptr());
  int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
  int* d_slot_vector = reinterpret_cast<int*>(buf_slot_vector->ptr());

  cudaMemcpy(gpu_values, grad_values.data(),
             grad_values.size() * sizeof(float*), cudaMemcpyHostToDevice);
  cudaMemcpy(gpu_len, slot_lengths_lod.data(),
             slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);
  cudaMemcpy(d_slot_vector, slot_vector_.data(),
             slot_lengths_lod.size() * sizeof(int), cudaMemcpyHostToDevice);

S
ShenLiang 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#define EMBEDX_CASE(i, ...)                                                  \
  case i: {                                                                  \
    constexpr size_t EmbedxDim = i;                                          \
    switch (expand_embed_dim) {                                              \
      __VA_ARGS__                                                            \
      default:                                                               \
        PADDLE_THROW(platform::errors::InvalidArgument(                      \
            "Unsupport this expand embedding size [%d]", expand_embed_dim)); \
    }                                                                        \
  } break

#define EXPAND_EMBED_PUSH_CASE(i, ...)                                       \
  case i: {                                                                  \
    constexpr size_t ExpandDim = i;                                          \
    PushCopy<EmbedxDim,                                                      \
             ExpandDim><<<(total_length + 512 - 1) / 512, 512, 0, stream>>>( \
        reinterpret_cast<boxps::FeaturePushValueGpu<EmbedxDim, ExpandDim>*>( \
            total_grad_values_gpu),                                          \
        gpu_values, gpu_len, hidden_size, expand_embed_dim,                  \
        slot_lengths.size(), total_length, batch_size, d_slot_vector);       \
  } break

  switch (hidden_size - 3) {
    EMBEDX_CASE(8, EXPAND_EMBED_PUSH_CASE(0); EXPAND_EMBED_PUSH_CASE(8);
                EXPAND_EMBED_PUSH_CASE(64););
    EMBEDX_CASE(16, EXPAND_EMBED_PUSH_CASE(0););
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupport this embedding size [%d]", hidden_size - 3));
  }

H
hutuxian 已提交
258
  cudaStreamSynchronize(stream);
S
ShenLiang 已提交
259 260
#undef EXPAND_EMBED_PUSH_CASE
#undef EMBEDX_CASE
H
hutuxian 已提交
261
}
S
ShenLiang 已提交
262

H
hutuxian 已提交
263 264 265
}  // end namespace framework
}  // end namespace paddle
#endif