elementwise_mul_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21
#include "paddle/fluid/operators/math/jit_kernel.h"
22
#ifdef PADDLE_WITH_XBYAK
23 24
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
25
#endif
26

27 28 29 30
namespace paddle {
namespace operators {

using framework::DataLayout;
31
using mkldnn::memory;
32
using platform::StringToMKLDNNFormat;
33 34

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
35 36
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
37
    auto format_as_string = ctx.Attr<std::string>(attribute);
38
    auto format = StringToMKLDNNFormat(&format_as_string);
39 40 41 42 43 44
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

45 46 47
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
48
                         const mkldnn::engine& engine, bool isFourDim) {
49 50 51 52 53 54
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
55 56 57 58 59 60
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
61 62 63 64
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
81
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
82

83 84
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
85

P
peizhilin 已提交
86
#ifdef PADDLE_WITH_XBYAK
87 88
    Xbyak::util::Cpu cpu;
    const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
P
peizhilin 已提交
89 90 91
#else
    const bool is_avx512_enabled = platform::MayIUse(platform::avx512f);
#endif  // PADDLE_WITH_XBYAK
92 93 94
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
95 96
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
97 98
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
99

100 101 102 103 104
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
105

106 107 108 109
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
110

111 112
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
113

114 115
        constexpr int simd_width = 16;
        int C = c / simd_width;
116

117 118 119
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
120

121
#pragma omp parallel for collapse(2)
122 123 124
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
125
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
126

127 128
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
129
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
130

131
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
132 133 134
          }
        }
      }
135 136 137

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
138 139
    } else {
      // Fallback to naive version:
140
      const bool are_inputs_in_same_format = x->format() == y->format();
141
      const bool is_x_nchw = x->format() == memory::format::nchw;
142
      const bool is_x_nc = x->format() == memory::format::nc;
143
      const bool is_y_nchw = y->format() == memory::format::nchw;
144
      const bool is_y_nc = y->format() == memory::format::nc;
145
      if (!are_inputs_in_same_format) {
146 147 148
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
149
        if (!(is_x_nchw || is_x_nc))
150
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
151 152
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
153
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
154
                          y->dims().size() == 4);
155 156
      }

157 158 159 160 161 162 163 164
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
181 182 183 184 185 186 187 188 189 190 191 192
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)