op_registry.h 5.2 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/grad_op_desc_maker.h"
D
dzhwinter 已提交
21
#include "paddle/fluid/framework/inplace_op_inference.h"
Y
Yi Wang 已提交
22 23 24 25
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_type_inference.h"
26 27 28 29 30 31 32 33

namespace paddle {
namespace framework {
namespace details {

enum OpInfoFillType {
  kOperator = 0,
  kOpProtoAndCheckerMaker = 1,
Y
Yu Yang 已提交
34
  kGradOpDescMaker = 2,
35
  kVarTypeInference = 3,
D
dzhwinter 已提交
36 37
  kShapeInference = 4,
  kInplaceOpInference = 5
38 39 40 41 42 43 44 45 46 47 48
};

template <typename T>
struct OpInfoFillTypeID {
  static constexpr OpInfoFillType ID() {
    return std::is_base_of<OperatorBase, T>::value
               ? kOperator
               : (std::is_base_of<OpProtoAndCheckerMaker, T>::value
                      ? kOpProtoAndCheckerMaker
                      : (std::is_base_of<GradOpDescMakerBase, T>::value
                             ? kGradOpDescMaker
Y
Yu Yang 已提交
49 50
                             : (std::is_base_of<VarTypeInference, T>::value
                                    ? kVarTypeInference
51 52
                                    : (std::is_base_of<InferShapeBase, T>::value
                                           ? kShapeInference
D
dzhwinter 已提交
53 54 55 56 57
                                           : (std::is_base_of<
                                                  InplaceOpInference, T>::value
                                                  ? kInplaceOpInference
                                                  : static_cast<OpInfoFillType>(
                                                        -1))))));
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  }
};

template <typename T, OpInfoFillType = OpInfoFillTypeID<T>::ID()>
struct OpInfoFiller;

template <size_t I, bool at_end, typename... ARGS>
class OperatorRegistrarRecursive;

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, false, ARGS...> {
 public:
  using T = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {
    OpInfoFiller<T> fill;
    fill(op_type, info);
    constexpr auto size = sizeof...(ARGS);
    OperatorRegistrarRecursive<I + 1, I + 1 == size, ARGS...> reg(op_type,
                                                                  info);
    (void)(reg);
  }
};

template <size_t I, typename... ARGS>
class OperatorRegistrarRecursive<I, true, ARGS...> {
 public:
  OperatorRegistrarRecursive(const char* op_type, OpInfo* info) {}
};

template <typename T>
struct OpInfoFiller<T, kOperator> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->creator_ = [](const std::string& type, const VariableNameMap& inputs,
                        const VariableNameMap& outputs,
                        const AttributeMap& attrs) {
      return new T(type, inputs, outputs, attrs);
    };
  }
};

template <typename T>
struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
101
    info->proto_ = new proto::OpProto;
102
    info->checker_ = new OpAttrChecker();
Y
Yu Yang 已提交
103
    T maker;
Y
yuyang18 已提交
104
    maker(info->proto_, info->checker_);
105 106 107 108 109 110 111 112 113 114 115
    info->proto_->set_type(op_type);
    PADDLE_ENFORCE(
        info->proto_->IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, info->proto_->InitializationErrorString());
  }
};

template <typename T>
struct OpInfoFiller<T, kGradOpDescMaker> {
  void operator()(const char* op_type, OpInfo* info) const {
116
    info->grad_op_maker_ = [](
Y
Yu Yang 已提交
117
        const OpDesc& fwd_op,
118
        const std::unordered_set<std::string>& no_grad_set,
Y
Yu Yang 已提交
119
        std::unordered_map<std::string, std::string>* grad_to_var,
Y
Yu Yang 已提交
120
        const std::vector<BlockDesc*>& grad_block) {
Y
Yu Yang 已提交
121
      T maker(fwd_op, no_grad_set, grad_to_var, grad_block);
122 123
      return maker();
    };
124 125
  }
};
Y
Yu Yang 已提交
126 127 128 129

template <typename T>
struct OpInfoFiller<T, kVarTypeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
Y
Yu Yang 已提交
130
    info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) {
Y
Yu Yang 已提交
131 132 133 134 135 136
      T inference;
      inference(fwd_op, block);
    };
  }
};

137 138 139 140 141 142 143 144 145 146
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->infer_shape_ = [](InferShapeContext* ctx) {
      T inference;
      inference(ctx);
    };
  }
};

D
dzhwinter 已提交
147 148 149 150 151 152 153 154 155 156
template <typename T>
struct OpInfoFiller<T, kInplaceOpInference> {
  void operator()(const char* op_type, OpInfo* info) const {
    info->infer_inplace_ = [](const OpDesc& op_desc, BlockDesc* block) {
      T infer;
      return infer(op_desc, block);
    };
  }
};

157 158 159 160
}  // namespace details

}  // namespace framework
}  // namespace paddle