elementwise_mkldnn_op.h 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <string>
17 18 19
#include <unordered_map>

#include "paddle/fluid/framework/data_layout_transform.h"
20 21
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

27 28 29
using dnnl::memory;
using dnnl::primitive;
using dnnl::stream;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
using framework::DataLayout;
using framework::Tensor;

inline std::vector<int64_t> CalculateBroadcastedDims(const Tensor* x,
                                                     const Tensor* y) {
  const auto src_tz = phi::vectorize(x->dims());
  const auto dst_tz = phi::vectorize(y->dims());

  size_t j = 0;
  std::vector<int64_t> dst_tz_ex(src_tz.size(), 1);
  for (size_t i = 0; i < src_tz.size(); ++i) {
    dst_tz_ex[i] = (src_tz[i] != dst_tz[j]) ? 1 : dst_tz[j++];
    if (j == dst_tz.size()) break;
  }

  return dst_tz_ex;
}
47 48 49

template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNKernel : public framework::OpKernel<T> {
50 51 52
 private:
  dnnl::post_ops get_post_ops(const framework::ExecutionContext& ctx) const {
    dnnl::post_ops post_operations;
53
    platform::AppendActivation(ctx, post_operations);
54 55 56
    return post_operations;
  }

57 58 59 60 61 62
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

63 64
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
65 66 67 68 69 70 71
    auto* z = ctx.Output<Tensor>("Out");

    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    float scale_o = ctx.Attr<float>("Scale_out");
    int axis = ctx.Attr<int>("axis");

72 73 74 75 76 77 78 79 80 81 82
    platform::BinaryMKLDNNHandler<T> handler(BINARY_OP,
                                             axis,
                                             mkldnn_engine,
                                             ctx.GetPlace(),
                                             x,
                                             y,
                                             z,
                                             scale_x,
                                             scale_y,
                                             scale_o,
                                             get_post_ops(ctx));
83

84 85 86 87 88 89
    // oneDNN's binary is optimized for broadcasting y into x, so in other case
    // we have to swap tensors to achieve optimal performance
    if (x->numel() < y->numel()) {
      std::swap(x, y);
    }

90 91
    const auto src_x_memory = handler.AcquireSrcMemory(x);
    const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
92 93 94 95 96 97 98 99 100
    // (jczaja) For Inplace src and dst should be the same memory object.
    // So x should share buffer with z. But UT mechanics is testing inplace
    // execution for this op not checking that x can be bradcasted to match in
    // shape y tensor.
    // This is wrong as when x is to be broadcasted then z(out) will match the
    // shape of y which is bigger than x. Hence if x is smaller in shape than z
    // and they share a buffer (of
    // shape x) then this buffer is not big enough to hold result of elementwise
    // operation.
101 102
    const bool reuse_x_memopry =
        x->numel() == z->numel() && x->IsSharedBufferWith(*z);
103
    std::shared_ptr<dnnl::memory> dst_memory;
104 105 106 107 108 109 110 111 112 113 114 115 116
    if (reuse_x_memopry) {
      dst_memory = src_x_memory;
      // NOTE(chenfeiyu): when the output reuses memory from other tensor rather
      // than allocate its own, it's still need to take care of its data type.
      // Unfortunately, paddle's operator only infers the output' shape, but not
      // the data type. mutable_data<T> takes care of allocation and data type
      // normally, but if the memory is already allocated and there is no need
      // to re-allocate, it just set the data type. So this it added there to
      // get the right data type.
      z->mutable_data<T>(ctx.GetPlace());
    } else {
      dst_memory = handler.AcquireDstMemory(z);
    }
117 118 119

    const auto binary_prim = handler.AcquireForwardPrimitive();

120
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
121 122 123 124 125 126 127 128 129

    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC_0, *src_x_memory},
        {DNNL_ARG_SRC_1, *src_y_memory},
        {DNNL_ARG_DST, *dst_memory}};

    binary_prim->execute(astream, args);
    astream.wait();

130
    z->set_mem_desc(dst_memory->get_desc());
131 132
  }
};
133

134 135 136 137 138 139
template <typename T, dnnl::algorithm BINARY_OP>
class EltwiseMKLDNNGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
140

141 142 143
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();
144

145 146 147 148 149 150 151 152
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));

153 154 155 156 157 158 159
    // oneDNN's binary is optimized for broadcasting y into x, so in other case
    // we have to swap tensors to achieve optimal performance
    if (x->numel() < y->numel()) {
      std::swap(x, y);
      std::swap(dx, dy);
    }

160 161 162 163 164 165
    int axis = ctx.Attr<int>("axis");

    auto tz = phi::vectorize<int64_t>(dout->dims());
    auto proto_type_dout = framework::TransToProtoVarType(dout->dtype());

    platform::ReorderMKLDNNHandler reorder_handler(
166 167 168
        tz,
        proto_type_dout,
        framework::ToMKLDNNDataType(proto_type_dout),
169 170 171
        onednn_engine);

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
172
        dout->mem_desc(), platform::to_void_cast(dout->data<T>()));
173 174 175 176 177 178 179 180 181

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    if (dx) {
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
182 183
        dst_memory = reorder_handler.AcquireDstMemory(
            dx, dout->mem_desc(), ctx.GetPlace());
184 185 186
        auto reorder_p =
            reorder_handler.AcquireReorder(dst_memory, reorder_src_memory_p);
        platform::RecordEvent record_reorder(
187 188 189
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
190 191 192
            platform::EventRole::kUniqueOp);

        reorder_p->execute(astream, *reorder_src_memory_p, *dst_memory);
193
      } else {  // elementwise_mul & elementwise_div
194 195 196 197 198 199 200 201 202 203
        platform::BinaryMKLDNNHandler<T> binary_handler(BINARY_OP,
                                                        axis,
                                                        onednn_engine,
                                                        ctx.GetPlace(),
                                                        dout,
                                                        y,
                                                        dx,
                                                        1.0f,
                                                        1.0f,
                                                        1.0f);
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

        const auto src_dout_memory = binary_handler.AcquireSrcMemory(dout);
        const auto src_y_memory = binary_handler.AcquireSecondSrcMemory(y);
        dst_memory = binary_handler.AcquireDstMemory(dx);

        const auto binary_prim = binary_handler.AcquireForwardPrimitive();

        const std::unordered_map<int, dnnl::memory> args = {
            {DNNL_ARG_SRC_0, *src_dout_memory},
            {DNNL_ARG_SRC_1, *src_y_memory},
            {DNNL_ARG_DST, *dst_memory}};

        binary_prim->execute(astream, args);
      }
      astream.wait();

220
      dx->set_mem_desc(dst_memory->get_desc());
221 222 223 224 225 226 227 228 229 230 231 232
    }

    if (dy) {
      dnnl::primitive_attr broadcast_reduction_attr;
      std::shared_ptr<dnnl::memory> broadcast_src_memory;
      std::shared_ptr<dnnl::memory> dst_memory;

      // elementwise_add & elementwise_sub
      if (BINARY_OP == dnnl::algorithm::binary_add ||
          BINARY_OP == dnnl::algorithm::binary_sub) {
        if (dout->dims() == dy->dims()) {
          auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
233
              dy, dout->mem_desc(), ctx.GetPlace());
234 235 236 237 238 239 240 241

          dnnl::primitive_attr reorder_attr;
          std::vector<float> scales(1);
          scales[0] = (BINARY_OP == dnnl::algorithm::binary_add) ? 1 : -1;
          reorder_attr.set_output_scales(0, scales);
          auto reorder_p = std::make_shared<dnnl::reorder>(
              *(reorder_src_memory_p), *(reorder_dst_memory_p), reorder_attr);
          platform::RecordEvent record_reorder(
242 243 244
              "int_reorder",
              platform::TracerEventType::UserDefined,
              2,
245
              platform::EventRole::kUniqueOp);
246 247
          reorder_p->execute(
              astream, *reorder_src_memory_p, *reorder_dst_memory_p);
248 249 250 251 252

          dst_memory = reorder_dst_memory_p;
        } else {
          broadcast_src_memory = reorder_src_memory_p;
        }
253
      } else {  // elementwise_mul & elementwise_div
254 255 256 257 258 259 260
        std::unordered_map<int, dnnl::memory> args;
        std::shared_ptr<dnnl::binary> binary_prim;
        std::shared_ptr<dnnl::memory> post_op_memory;
        std::shared_ptr<dnnl::memory> src_0_memory;
        std::shared_ptr<dnnl::memory> src_1_memory;

        platform::BinaryMKLDNNHandler<T> binary_handler(
261 262 263 264 265 266 267 268 269 270
            dnnl::algorithm::binary_mul,
            axis,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            x,
            nullptr,
            1.0f,
            1.0f,
            1.0f);
271 272 273 274 275

        src_1_memory = binary_handler.AcquireSecondSrcMemory(x);

        if (BINARY_OP == dnnl::algorithm::binary_div) {
          platform::BinaryMKLDNNHandler<T> post_op_binary_handler(
276 277 278 279 280 281 282 283 284 285
              dnnl::algorithm::binary_div,
              axis,
              onednn_engine,
              ctx.GetPlace(),
              y,
              y,
              nullptr,
              1.0f,
              1.0f,
              1.0f);
286 287 288 289 290 291 292

          post_op_memory = post_op_binary_handler.AcquireSrcMemory(y);

          dnnl::post_ops po;
          po.append_binary(dnnl::algorithm::binary_div,
                           post_op_memory->get_desc());

293 294 295 296 297 298 299 300 301 302 303 304
          binary_handler =
              platform::BinaryMKLDNNHandler<T>(dnnl::algorithm::binary_mul,
                                               axis,
                                               onednn_engine,
                                               ctx.GetPlace(),
                                               dout,
                                               out,
                                               nullptr,
                                               -1.0f,
                                               1.0f,
                                               1.0f,
                                               po);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

          src_1_memory = binary_handler.AcquireSecondSrcMemory(out);
        }

        src_0_memory = binary_handler.AcquireSrcMemory(dout);

        const auto dst_dy_memory = (dout->dims() == dy->dims())
                                       ? binary_handler.AcquireDstMemory(dy)
                                       : binary_handler.AcquireDstMemory();

        binary_prim = binary_handler.AcquireForwardPrimitive();
        args = {{DNNL_ARG_SRC_0, *src_0_memory},
                {DNNL_ARG_SRC_1, *src_1_memory},
                {DNNL_ARG_DST, *dst_dy_memory}};

        if (BINARY_OP == dnnl::algorithm::binary_div)
          args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                       *post_op_memory});

        binary_prim->execute(astream, args);
        broadcast_src_memory = dst_dy_memory;
        dst_memory = dst_dy_memory;
      }
      astream.wait();

      if (dout->dims() != dy->dims()) {
        // Broadcasting
        if (BINARY_OP == dnnl::algorithm::binary_sub) {
          dnnl::post_ops po;
          po.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear, -1.0f, 0);
          broadcast_reduction_attr.set_post_ops(po);
        }

        platform::ReductionMKLDNNHandler<T> reduction_handler(
339 340 341 342 343 344 345 346
            dnnl::algorithm::reduction_sum,
            0.0f,
            0.0f,
            onednn_engine,
            ctx.GetPlace(),
            dout,
            dy,
            CalculateBroadcastedDims(dout, dy),
347 348 349 350 351
            broadcast_reduction_attr);
        dst_memory = reduction_handler.AcquireDstMemory(dy);

        auto reduction_p = reduction_handler.AcquireForwardPrimitive();

352 353 354 355 356
        reduction_p->execute(astream,
                             {
                                 {DNNL_ARG_SRC, *broadcast_src_memory},
                                 {DNNL_ARG_DST, *dst_memory},
                             });
357
        astream.wait();
358 359
        dy->set_mem_desc(dst_memory->get_desc().reshape(
            phi::vectorize<int64_t>(dy->dims())));
360
      } else {
361
        dy->set_mem_desc(dst_memory->get_desc());
362 363 364 365
      }
    }
  }
};
366 367
}  // namespace operators
}  // namespace paddle