collective_scatter_api.py 1.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_api_base import TestCollectiveAPIRunnerBase, runtime_main


class TestCollectiveScatterAPI(TestCollectiveAPIRunnerBase):
    def __init__(self):
        self.global_ring_id = 0

    def get_model(self, main_prog, startup_program, rank):
        with fluid.program_guard(main_prog, startup_program):
            tindata = layers.data(
                name="tindata",
                shape=[10, 1000],
                dtype='float64',
                append_batch_size=False)
            toutdata = layers.fill_constant(
                shape=[5, 1000], dtype='float64', value=1.0)
            tensor_list = None
            if rank == 1:
                tensor_list = paddle.split(tindata, 2, axis=0)
            paddle.distributed.scatter(toutdata, tensor_list, src=1)
            return [toutdata]


if __name__ == "__main__":
    runtime_main(TestCollectiveScatterAPI, "scatter")