multihead_matmul_op.cc 10.4 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class MultiheadMatMulOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt "
               "network structure";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* Q = engine_->GetITensor(op_desc.Input("Q").front());
    auto* K = engine_->GetITensor(op_desc.Input("K").front());
    auto* V = engine_->GetITensor(op_desc.Input("V").front());
    auto* BiasQ = scope.FindVar(op_desc.Input("BiasQ").front());
    auto* BiasK = scope.FindVar(op_desc.Input("BiasK").front());
    auto* BiasV = scope.FindVar(op_desc.Input("BiasV").front());
    auto* BiasQK = engine_->GetITensor(op_desc.Input("BiasQK").front());
    PADDLE_ENFORCE_EQ(op_desc.Input("Q").size(), 1,
                      platform::errors::InvalidArgument(
                          "size of input Q of multihead_matmul should be 1"));
    PADDLE_ENFORCE_EQ(op_desc.Input("K").size(), 1,
                      platform::errors::InvalidArgument(
                          "size of input K of multihead_matmul should be 1"));
    PADDLE_ENFORCE_EQ(op_desc.Input("V").size(), 1,
                      platform::errors::InvalidArgument(
                          "size of input V of multihead_matmul should be 1"));
    PADDLE_ENFORCE_EQ(
        op_desc.Input("BiasQK").size(), 1,
        platform::errors::InvalidArgument(
            "size of input BiasQK of multihead_matmul should be 1"));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1,
                      platform::errors::InvalidArgument(
                          "size of output of multihead_matmul should be 1"));
    PADDLE_ENFORCE_NOT_NULL(
        BiasQ, platform::errors::InvalidArgument(
                   "param BiasQ of multihead_matmul should not be null"));
    PADDLE_ENFORCE_NOT_NULL(
        BiasK, platform::errors::InvalidArgument(
                   "param BiasK of multihead_matmul should not be null"));
    PADDLE_ENFORCE_NOT_NULL(
        BiasV, platform::errors::InvalidArgument(
                   "param BiasV of multihead_matmul should not be null"));
    PADDLE_ENFORCE_EQ(
        BiasQK->getDimensions().nbDims, 3,
        platform::errors::InvalidArgument(
            "dims size of input BiasQK of multihead_matmul should be 3"));
    PADDLE_ENFORCE_EQ(
        op_desc.HasAttr("alpha"), true,
        platform::errors::PreconditionNotMet(
            "attribute alpha of multihead_matmul should not be empty"));
    PADDLE_ENFORCE_EQ(
        op_desc.HasAttr("head_number"), true,
        platform::errors::PreconditionNotMet(
            "attribute head_number of multihead_matmul should not be empty"));

    // Declare attributes
    const bool transpose_q =
        op_desc.HasAttr("transpose_Q")
            ? boost::get<bool>(op_desc.GetAttr("transpose_Q"))
            : false;
    const bool transpose_k =
        op_desc.HasAttr("transpose_K")
            ? boost::get<bool>(op_desc.GetAttr("transpose_K"))
            : true;
    const bool transpose_v =
        op_desc.HasAttr("transpose_V")
            ? boost::get<bool>(op_desc.GetAttr("transpose_V"))
            : false;
    const float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
    const int head_number = boost::get<int>(op_desc.GetAttr("head_number"));

    nvinfer1::Dims q_shape = Q->getDimensions();
    int seq_len = q_shape.d[0];
    int size_per_head = q_shape.d[1] / head_number;
    std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
    framework::DDim alpha_dim = framework::make_ddim({1});
    std::unique_ptr<framework::LoDTensor> alpha_t(new framework::LoDTensor());
    alpha_t->Resize(alpha_dim);
    float* alpha_data = alpha_t->mutable_data<float>(platform::CPUPlace());
    alpha_data[0] = alpha;

    TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT,
                                 static_cast<void*>(alpha_data), 1};
    TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
    TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};

    auto* bias_q_t = BiasQ->GetMutable<framework::LoDTensor>();
    auto* bias_k_t = BiasK->GetMutable<framework::LoDTensor>();
    auto* bias_v_t = BiasV->GetMutable<framework::LoDTensor>();
    float* bias_q_cpu_data = engine_->GetWeightCPUData(
        op_desc.Input("BiasQ").front(), bias_q_t, false);
    float* bias_k_cpu_data = engine_->GetWeightCPUData(
        op_desc.Input("BiasK").front(), bias_k_t, false);
    float* bias_v_cpu_data = engine_->GetWeightCPUData(
        op_desc.Input("BiasV").front(), bias_v_t, false);
    std::unique_ptr<framework::LoDTensor> bias_q_tensor(
        new framework::LoDTensor());
    std::unique_ptr<framework::LoDTensor> bias_k_tensor(
        new framework::LoDTensor());
    std::unique_ptr<framework::LoDTensor> bias_v_tensor(
        new framework::LoDTensor());
    bias_q_tensor->Resize(bias_q_t->dims());
    bias_k_tensor->Resize(bias_k_t->dims());
    bias_v_tensor->Resize(bias_v_t->dims());
    platform::CPUPlace cpu_place;
    TensorCopySync((*bias_q_t), cpu_place, bias_q_tensor.get());
    TensorCopySync((*bias_k_t), cpu_place, bias_k_tensor.get());
    TensorCopySync((*bias_v_t), cpu_place, bias_v_tensor.get());

    TensorRTEngine::Weight scale_weights_q{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
    TensorRTEngine::Weight shift_weights_q{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(bias_q_cpu_data),
        bias_q_tensor->memory_size() / sizeof(float)};
    TensorRTEngine::Weight power_weights_q{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
    TensorRTEngine::Weight scale_weights_k{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
    TensorRTEngine::Weight shift_weights_k{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(bias_k_cpu_data),
        bias_k_tensor->memory_size() / sizeof(float)};
    TensorRTEngine::Weight power_weights_k{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
    TensorRTEngine::Weight scale_weights_v{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};
    TensorRTEngine::Weight shift_weights_v{
        nvinfer1::DataType::kFLOAT, static_cast<void*>(bias_v_cpu_data),
        bias_v_tensor->memory_size() / sizeof(float)};
    TensorRTEngine::Weight power_weights_v{nvinfer1::DataType::kFLOAT, nullptr,
                                           0};

    auto* q_eltadd_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *Q, nvinfer1::ScaleMode::kCHANNEL,
        shift_weights_q.get(), scale_weights_q.get(), power_weights_q.get());
    auto* k_eltadd_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *K, nvinfer1::ScaleMode::kCHANNEL,
        shift_weights_k.get(), scale_weights_k.get(), power_weights_k.get());
    auto* v_eltadd_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *V, nvinfer1::ScaleMode::kCHANNEL,
        shift_weights_v.get(), scale_weights_v.get(), power_weights_v.get());
    auto* v_transpose_reshape_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(v_eltadd_layer->getOutput(0)));
    auto* q_transpose_reshape_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(q_eltadd_layer->getOutput(0)));
    auto* k_transpose_reshape_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *(k_eltadd_layer->getOutput(0)));

    nvinfer1::Dims3 head_reshape_dim(seq_len, head_number, size_per_head);
    v_transpose_reshape_layer->setReshapeDimensions(head_reshape_dim);
    v_transpose_reshape_layer->setSecondTranspose({1, 0, 2});
    q_transpose_reshape_layer->setReshapeDimensions(head_reshape_dim);
    q_transpose_reshape_layer->setSecondTranspose({1, 0, 2});
    k_transpose_reshape_layer->setReshapeDimensions(head_reshape_dim);
    k_transpose_reshape_layer->setSecondTranspose({1, 0, 2});

    auto* q_scale_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *(q_transpose_reshape_layer->getOutput(0)),
        nvinfer1::ScaleMode::kUNIFORM, shift.get(), scale.get(), power.get());
    auto* qk_matmul_layer = TRT_ENGINE_ADD_LAYER(
        engine_, MatrixMultiply, *(q_scale_layer->getOutput(0)), transpose_q,
        *(k_transpose_reshape_layer->getOutput(0)), transpose_k);
    auto* qk_eltadd_layer = TRT_ENGINE_ADD_LAYER(
        engine_, ElementWise, *BiasQK, *(qk_matmul_layer->getOutput(0)),
        nvinfer1::ElementWiseOperation::kSUM);
    auto* softmax_layer = TRT_ENGINE_ADD_LAYER(
        engine_, SoftMax, *(qk_eltadd_layer->getOutput(0)));
    softmax_layer->setAxes(4);
    auto* qkv_matmul_layer = TRT_ENGINE_ADD_LAYER(
        engine_, MatrixMultiply, *(softmax_layer->getOutput(0)), false,
        *(v_transpose_reshape_layer->getOutput(0)), transpose_v);
    auto* qkv_transpose_reshape_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Shuffle, *(qkv_matmul_layer->getOutput(0)));
    nvinfer1::Dims2 qkv_reshape_dim(seq_len, head_number * size_per_head);
    qkv_transpose_reshape_layer->setFirstTranspose({1, 0, 2});
    qkv_transpose_reshape_layer->setReshapeDimensions(qkv_reshape_dim);

    engine_->SetWeights(alpha_name, std::move(alpha_t));
    engine_->SetWeights(op_desc.Input("BiasQ").front(),
                        std::move(bias_q_tensor));
    engine_->SetWeights(op_desc.Input("BiasK").front(),
                        std::move(bias_k_tensor));
    engine_->SetWeights(op_desc.Input("BiasV").front(),
                        std::move(bias_v_tensor));

    auto output_name = op_desc.Output("Out").front();
    RreplenishLayerAndOutput(qkv_transpose_reshape_layer, "multihead_matmul",
                             {output_name}, test_mode);
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);