functional.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import framework
16
from .utils import _check_tensors, _stack_tensor_or_return_none, _replace_none_with_zero_tensor
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
import paddle


@framework.dygraph_only
def jacobian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
        **This API is ONLY available in imperative mode.**

    This API computes the Jacobian matrix of `func` with respect to `inputs`.

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs and returns a Tensor or a Tensor tuple.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Jacobian (Tensor or nested tuple of Tensors): if function ``func``
        takes a Tensor as inputs and returns a Tensor as outputs, Jacobian
        will be a single Tensor containing the Jacobian matrix for the
        linearized inputs and outputs. If one of the inputs and outputs is
        a Tensor, and another is a Tensor list/tuple, then the Jacobian will
        be a tuple of Tensors. If both of inputs and outputs are Tensor
        list/tuple, then the Jacobian will be a tuple of tuple of Tensors
        where ``Jacobian[i][j]`` will contain the Jacobian matrix of the
        linearized ``i``th output and ``j``th input and will have same
        dtype and device as the corresponding input. ``Jacobian[i][j]`` will
        have as size ``m * n``, where ``m`` and ``n`` denote the numbers of
        elements of ``i``th output and ``j``th input respectively.


    Examples 1:
        .. code-block:: python

            import paddle

            def func(x):
                return paddle.matmul(x, x)
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, x)
            print(jacobian)
            # Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 2., 0., 1.],
            #         [1., 0., 2., 1.],
            #         [0., 1., 1., 2.]])

    Examples 2:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.matmul(x, y)
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32') * 2
            x.stop_gradient = False
            y.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, [x, y], create_graph=True)
            print(jacobian)
            # (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [[2., 2., 0., 0.],
            #         [2., 2., 0., 0.],
            #         [0., 0., 2., 2.],
            #         [0., 0., 2., 2.]]), 
            #  Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
            #        [[1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.]]))

    Examples 3:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.matmul(x, y), x * x

            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32') * 2
            x.stop_gradient = False
            y.stop_gradient = False
            jacobian = paddle.autograd.jacobian(func, [x, y], allow_unused=True)
            print(jacobian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 2., 0., 0.],
            #         [2., 2., 0., 0.],
            #         [0., 0., 2., 2.],
            #         [0., 0., 2., 2.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.]])),
            #  (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 0., 0., 0.],
            #         [0., 2., 0., 0.],
            #         [0., 0., 2., 0.],
            #         [0., 0., 0., 2.]]), None))

    '''
    inputs = _check_tensors(inputs, "inputs")
    outputs = _check_tensors(func(*inputs), "outputs")
    fin_size = len(inputs)
    fout_size = len(outputs)
    flat_outputs = tuple(
        paddle.reshape(
            output, shape=[-1]) for output in outputs)
    jacobian = tuple()
    for i, flat_output in enumerate(flat_outputs):
        jac_i = list([] for _ in range(fin_size))
        for k in range(len(flat_output)):
            row_k = paddle.grad(
                flat_output[k],
                inputs,
                create_graph=create_graph,
                retain_graph=True,
                allow_unused=allow_unused)
            for j in range(fin_size):
                jac_i[j].append(
                    paddle.reshape(
                        row_k[j], shape=[-1])
                    if isinstance(row_k[j], paddle.Tensor) else None)
        jacobian += (tuple(
            _stack_tensor_or_return_none(jac_i_j) for jac_i_j in jac_i), )
    if fin_size == 1 and fout_size == 1:
        return jacobian[0][0]
    elif fin_size == 1 and fout_size != 1:
        return tuple(jacobian[i][0] for i in range(fout_size))
    elif fin_size != 1 and fout_size == 1:
        return jacobian[0]
    else:
        return jacobian
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


@framework.dygraph_only
def hessian(func, inputs, create_graph=False, allow_unused=False):
    ''' 
    .. note::
        **This API is ONLY available in imperative mode.**

    This API computes the Hessian matrix of `func` with respect to `inputs`.

    Parameters:
        func (function): a Python function that takes a Tensor or a Tensor
            list/tuple as inputs and returns a Tensor with a single element.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the function ``func``.
        create_graph (bool, optional): whether to create the gradient graphs
            of the computing process. When it is True, higher order derivatives
            are supported to compute; when it is False, the gradient graphs of
            the computing process would be discarded. Defaults to ``False``.
        allow_unused (bool, optional): whether to raise error or return None if
            some Tensors of `inputs` are unreachable in the graph. Error would
            be raised if allow_unused=False, and None would be returned as
            their gradients if allow_unused=True. Default False.
    Returns:
        Hessian (Tensor or a tuple of tuple of Tensors): if function ``func``
        takes a Tensor as ``inputs``, Hessian will be a single Tensor containing
        the Hessian matrix for the linearized ``inputs`` Tensor. If function
        ``func`` takes a Tensor list/tuple as ``inputs``, then the Hessian will
        be a tuple of tuple of Tensors where ``Hessian[i][j]`` will contain the
        Hessian matrix of the ``i``th input and ``j``th input with size ``m * n``.
        Here ``m`` and ``n`` denote the number of elements of the ``i`` th input
        and the ``j`` th input respectively.

    Examples 1:
        .. code-block:: python

            import paddle

            def func(x):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            hessian = paddle.autograd.hessian(func, x)
            print(hessian)
            # Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 0., 2., 1.],
            #         [1., 2., 0., 1.],
            #         [0., 1., 1., 2.]])

    Examples 2:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.sum(paddle.matmul(x, y))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            y.stop_gradient = False
            hessian = paddle.autograd.hessian(func, [x, y])
            print(hessian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 1., 0., 0.],
            #         [0., 0., 1., 1.],
            #         [1., 1., 0., 0.],
            #         [0., 0., 1., 1.]])),
            #  (Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[1., 0., 1., 0.],
            #         [1., 0., 1., 0.],
            #         [0., 1., 0., 1.],
            #         [0., 1., 0., 1.]]),
            #   Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.],
            #         [0., 0., 0., 0.]])))

    Examples 3:
        .. code-block:: python

            import paddle

            def func(x, y):
                return paddle.sum(paddle.matmul(x, x))
            
            x = paddle.ones(shape=[2, 2], dtype='float32')
            y = paddle.ones(shape=[2, 2], dtype='float32')
            x.stop_gradient = False
            y.stop_gradient = False
            hessian = paddle.autograd.hessian(func, [x, y], allow_unused=True)
            print(hessian)
            # ((Tensor(shape=[4, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[2., 1., 1., 0.],
            #         [1., 0., 2., 1.],
            #         [1., 2., 0., 1.],
            #         [0., 1., 1., 2.]]), None), (None, None))

    '''
    inputs = _check_tensors(inputs, "inputs")
    outputs = func(*inputs)
    assert isinstance(outputs, paddle.Tensor) and outputs.shape == [
        1
    ], "The function to compute Hessian matrix should return a Tensor with a single element"

    def jac_func(*ins):
        grad_inputs = paddle.grad(
            outputs,
            ins,
            create_graph=True,
            retain_graph=True,
            allow_unused=allow_unused)
        return tuple(
            _replace_none_with_zero_tensor(grad_inputs[i], inputs[i])
            for i in range(len(inputs)))

    return jacobian(
        jac_func, inputs, create_graph=create_graph, allow_unused=allow_unused)