viterbi_decode_op.h 18.6 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
F
From00 已提交
17
#include "paddle/fluid/framework/op_registry.h"
J
Jack Zhou 已提交
18 19 20 21 22
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/operators/unique_op.h"
F
From00 已提交
23
#include "paddle/phi/kernels/funcs/compare_functors.h"
24
#include "paddle/phi/kernels/funcs/gather.h"
J
Jack Zhou 已提交
25 26 27 28 29 30 31 32 33
#ifdef PADDLE_WITH_MKLML
#include <omp.h>
#endif

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T, typename IndType>
struct Argmax {
34 35 36
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out_idx,
                  framework::Tensor* out, int axis) {
J
Jack Zhou 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    framework::DDim input_dims = input.dims();
    int64_t pre = 1;
    int64_t post = 1;
    int64_t n = input_dims[axis];
    for (int i = 0; i < axis; i++) {
      pre *= input_dims[i];
    }
    for (int i = axis + 1; i < input_dims.size(); i++) {
      post *= input_dims[i];
    }
    int64_t height = pre * post;
    int64_t width = n;
    const T* in_data = input.data<T>();
    IndType* out_idx_data = out_idx->data<IndType>();
    T* out_data = out->data<T>();
// Reduce
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
    for (int64_t i = 0; i < height; ++i) {
      int64_t h = i / post;
      int64_t w = i % post;
      IndType max_idx = -1;
      T max_value = (std::numeric_limits<T>::lowest)();  // for windows compile
      for (int64_t j = 0; j < width; ++j) {
        if (in_data[h * width * post + j * post + w] > max_value) {
          max_value = in_data[h * width * post + j * post + w];
          max_idx = j;
        }
      }
      out_data[i] = max_value;
      out_idx_data[i] = max_idx;
    }
  }
};

template <typename DeviceContext>
struct ARange {
  void operator()(const DeviceContext& dev_ctx, int64_t* data, int end,
                  int64_t scale) {
    for (int i = 0; i < end; ++i) {
      data[i] = i * scale;
    }
  }
};

template <typename DeviceContext, typename T>
struct GetMaxValue {
85
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& input,
J
Jack Zhou 已提交
86 87 88 89 90 91 92 93 94
                  T* max_value) {
    auto input_ptr = input.data<T>();
    auto num = input.numel();
    *max_value = *std::max_element(input_ptr, input_ptr + num);
  }
};

template <typename DeviceContext, typename T, typename IndexT = int>
struct Gather {
95 96 97
  void operator()(const DeviceContext& ctx, const framework::Tensor& src,
                  const framework::Tensor& index, framework::Tensor* output) {
    phi::funcs::CPUGather<T, IndexT>(ctx, src, index, output);
J
Jack Zhou 已提交
98 99 100 101
  }
};

template <typename T, typename Functor, typename OutT = T>
102 103
void SameDimsBinaryOP(const framework::Tensor& lhs,
                      const framework::Tensor& rhs, framework::Tensor* out) {
J
Jack Zhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115
  const T* lhs_ptr = lhs.data<T>();
  const T* rhs_ptr = rhs.data<T>();
  OutT* out_ptr = out->data<OutT>();
  Functor functor;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int i = 0; i < out->numel(); ++i) {
    out_ptr[i] = functor(lhs_ptr[i], rhs_ptr[i]);
  }
}

Z
Zhang Ting 已提交
116 117
template <typename DeviceContext,
          template <typename InT, typename OutT> typename CompareFunctor,
J
Jack Zhou 已提交
118 119
          typename T>
struct GetMask {
120 121 122
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& lhs, const framework::Tensor& rhs,
                  framework::Tensor* mask) {
Z
Zhang Ting 已提交
123
    SameDimsBinaryOP<int64_t, CompareFunctor<int64_t, T>, T>(lhs, rhs, mask);
J
Jack Zhou 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }
};

template <bool is_multi_threads>
struct GetInputIndex {
  void operator()(const std::vector<int>& lhs_dims,
                  const std::vector<int>& rhs_dims,
                  const std::vector<int>& output_dims,
                  const std::vector<int>& lhs_strides,
                  const std::vector<int>& rhs_strides,
                  const std::vector<int>& output_strides, int output_idx,
                  int* index_array, int* lhs_idx, int* rhs_idx) {
    int out_dims_size = output_strides.size();
    for (int j = 0; j < out_dims_size; ++j) {
      int curr_idx = output_idx / output_strides[j];
      output_idx %= output_strides[j];
      *lhs_idx += (lhs_dims[j] > 1) ? curr_idx * lhs_strides[j] : 0;
      *rhs_idx += (rhs_dims[j] > 1) ? curr_idx * rhs_strides[j] : 0;
    }
  }
};

template <>
struct GetInputIndex<false> {
  void operator()(const std::vector<int>& lhs_dims,
                  const std::vector<int>& rhs_dims,
                  const std::vector<int>& output_dims,
                  const std::vector<int>& lhs_strides,
                  const std::vector<int>& rhs_strides,
                  const std::vector<int>& output_strides, int output_idx,
                  int* index_array, int* lhs_idx, int* rhs_idx) {
    int out_dims_size = output_strides.size();
156 157 158 159 160 161
    *lhs_idx = phi::funcs::GetElementwiseIndex(lhs_dims.data(), out_dims_size,
                                               index_array);
    *rhs_idx = phi::funcs::GetElementwiseIndex(rhs_dims.data(), out_dims_size,
                                               index_array);
    phi::funcs::UpdateElementwiseIndexArray(output_dims.data(), out_dims_size,
                                            index_array);
J
Jack Zhou 已提交
162 163 164 165
  }
};

template <typename T, typename Functor, bool is_multi_threads = false>
166 167 168
void SimpleBroadcastBinaryOP(const framework::Tensor& lhs,
                             const framework::Tensor& rhs,
                             framework::Tensor* out) {
J
Jack Zhou 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  const T* lhs_ptr = lhs.data<T>();
  const T* rhs_ptr = rhs.data<T>();
  T* out_ptr = out->data<T>();
  int out_size = static_cast<int>(out->dims().size());
  std::vector<int> out_dims(out_size);
  std::vector<int> lhs_dims(out_size);
  std::vector<int> rhs_dims(out_size);
  std::copy(lhs.dims().Get(), lhs.dims().Get() + out_size, lhs_dims.data());
  std::copy(rhs.dims().Get(), rhs.dims().Get() + out_size, rhs_dims.data());
  std::copy(out->dims().Get(), out->dims().Get() + out_size, out_dims.data());
  std::vector<int> output_strides(out_size, 1);
  std::vector<int> lhs_strides(out_size, 1);
  std::vector<int> rhs_strides(out_size, 1);
  std::vector<int> index_array(out_size, 0);
  // calculate strides
  for (int i = out_size - 2; i >= 0; --i) {
    output_strides[i] = output_strides[i + 1] * out_dims[i + 1];
    lhs_strides[i] = lhs_strides[i + 1] * lhs_dims[i + 1];
    rhs_strides[i] = rhs_strides[i + 1] * rhs_dims[i + 1];
  }
  Functor functor;
  GetInputIndex<is_multi_threads> get_input_index;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int i = 0; i < out->numel(); ++i) {
    int lhs_idx = 0;
    int rhs_idx = 0;
    get_input_index(lhs_dims, rhs_dims, out_dims, lhs_strides, rhs_strides,
                    output_strides, i, index_array.data(), &lhs_idx, &rhs_idx);
    out_ptr[i] = functor(lhs_ptr[lhs_idx], rhs_ptr[rhs_idx]);
  }
}

template <typename DeviceContext, template <typename T> typename BinaryFunctor,
          typename T>
struct BinaryOperation {
206 207
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& lhs,
                  const framework::Tensor& rhs, framework::Tensor* output) {
J
Jack Zhou 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    if (lhs.dims() == rhs.dims()) {
      SameDimsBinaryOP<T, BinaryFunctor<T>>(lhs, rhs, output);
    } else {
      bool is_multi_threads = false;
#ifdef PADDLE_WITH_MKLML
      if (omp_get_max_threads() > 1) {
        is_multi_threads = true;
      }
#endif
      if (is_multi_threads) {
        SimpleBroadcastBinaryOP<T, BinaryFunctor<T>, true>(lhs, rhs, output);
      } else {
        SimpleBroadcastBinaryOP<T, BinaryFunctor<T>, false>(lhs, rhs, output);
      }
    }
  }
};

class TensorBuffer {
 public:
228 229
  explicit TensorBuffer(const framework::LoDTensor& in)
      : buffer_(in), offset_(0) {
J
Jack Zhou 已提交
230 231
    buffer_.Resize({buffer_.numel()});
  }
232
  framework::Tensor GetBufferBlock(std::initializer_list<int64_t> shape) {
J
Jack Zhou 已提交
233 234
    int64_t size = std::accumulate(shape.begin(), shape.end(), 1,
                                   std::multiplies<int64_t>());
235
    framework::Tensor block = buffer_.Slice(offset_, offset_ + size);
J
Jack Zhou 已提交
236 237 238 239 240 241
    offset_ += size;
    block.Resize(shape);
    return block;
  }

 private:
242
  framework::LoDTensor buffer_;  // need to resize 1-D Tensor
J
Jack Zhou 已提交
243 244 245 246 247 248 249 250 251 252
  int offset_;
};

template <typename DeviceContext, typename T>
class ViterbiDecodeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool include_bos_eos_tag = ctx.Attr<bool>("include_bos_eos_tag");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto curr_place = ctx.GetPlace();
253
    auto* input = ctx.Input<framework::Tensor>("Input");
J
Jack Zhou 已提交
254 255 256
    auto batch_size = static_cast<int>(input->dims()[0]);
    auto seq_len = static_cast<int>(input->dims()[1]);
    auto n_labels = static_cast<int>(input->dims()[2]);
257 258
    phi::funcs::SetConstant<DeviceContext, T> float_functor;
    phi::funcs::SetConstant<DeviceContext, int64_t> int_functor;
259
    std::vector<framework::Tensor> historys;
J
Jack Zhou 已提交
260 261 262
    // We create tensor buffer in order to avoid allocating memory frequently
    // 10 means allocate 10*batch_size bytes memory, such as int_mask, zero...
    int buffer_size = batch_size * (n_labels + 1) * seq_len + 10 * batch_size;
263
    framework::LoDTensor int_buffer;
264
    int_buffer.Resize(phi::make_ddim({buffer_size}));
J
Jack Zhou 已提交
265 266 267 268 269 270
    int_buffer.mutable_data<int64_t>(ctx.GetPlace());
    TensorBuffer int_tensor_buffer(int_buffer);
    // create float tensor buffer
    // 10 means allocate 10*batch_size*n_labels bytes, such as alpha, alpha_max
    buffer_size = batch_size * (seq_len + 10) * n_labels +
                  (batch_size + 2) * n_labels * n_labels;
271
    framework::LoDTensor float_buffer;
272
    float_buffer.Resize(phi::make_ddim({buffer_size}));
J
Jack Zhou 已提交
273 274
    float_buffer.mutable_data<T>(ctx.GetPlace());
    TensorBuffer float_tensor_buffer(float_buffer);
275 276 277
    auto* length = ctx.Input<framework::Tensor>("Length");
    framework::Tensor left_length =
        int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
278 279 280 281 282
    framework::TensorCopy(*length, curr_place, dev_ctx, &left_length);
    int64_t max_seq_len = 0;
    GetMaxValue<DeviceContext, int64_t> get_max_value;
    get_max_value(dev_ctx, left_length, &max_seq_len);

283
    auto* scores = ctx.Output<framework::Tensor>("Scores");
J
Jack Zhou 已提交
284
    scores->mutable_data<T>(curr_place);
285
    auto* path = ctx.Output<framework::Tensor>("Path");
J
Jack Zhou 已提交
286 287
    path->Resize({batch_size, max_seq_len});
    path->mutable_data<int64_t>(curr_place);
288 289
    framework::Tensor tpath =
        int_tensor_buffer.GetBufferBlock({max_seq_len, batch_size});
J
Jack Zhou 已提交
290 291 292 293 294
    auto batch_path = Unbind(tpath);
    for (auto it = batch_path.begin(); it != batch_path.end(); ++it) {
      it->Resize({batch_size});
    }
    // create and init required tensor
295
    framework::Tensor input_exp =
J
Jack Zhou 已提交
296 297
        float_tensor_buffer.GetBufferBlock({seq_len, batch_size, n_labels});
    TransCompute<DeviceContext, T>(3, dev_ctx, *input, &input_exp, {1, 0, 2});
298 299 300
    auto* transition = ctx.Input<framework::Tensor>("Transition");
    framework::Tensor trans_exp =
        float_tensor_buffer.GetBufferBlock({n_labels, n_labels});
J
Jack Zhou 已提交
301 302
    framework::TensorCopy(*transition, curr_place, dev_ctx, &trans_exp);
    trans_exp.Resize({1, n_labels, n_labels});
303 304 305
    framework::Tensor alpha =
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
    framework::Tensor zero = int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
306
    int_functor(dev_ctx, &zero, 0);
307
    framework::Tensor one = int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
308
    int_functor(dev_ctx, &one, 1);
309 310
    framework::Tensor float_one =
        float_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
311
    float_functor(dev_ctx, &float_one, static_cast<T>(1.0));
312
    framework::Tensor alpha_trn_sum =
J
Jack Zhou 已提交
313
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels, n_labels});
314
    framework::Tensor alpha_max =
J
Jack Zhou 已提交
315
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
316
    framework::Tensor alpha_argmax =
J
Jack Zhou 已提交
317 318
        int_tensor_buffer.GetBufferBlock({seq_len, batch_size, n_labels});
    auto alpha_argmax_unbind = Unbind(alpha_argmax);
319
    framework::Tensor alpha_nxt =
J
Jack Zhou 已提交
320
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
321 322 323 324 325 326 327 328 329 330
    framework::Tensor int_mask = int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor zero_len_mask =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor float_mask =
        float_tensor_buffer.GetBufferBlock({batch_size, 1});
    framework::Tensor stop_trans =
        float_tensor_buffer.GetBufferBlock({1, 1, n_labels});
    framework::Tensor start_trans =
        float_tensor_buffer.GetBufferBlock({1, 1, n_labels});
    framework::Tensor rest_trans =
J
Jack Zhou 已提交
331
        float_tensor_buffer.GetBufferBlock({1, n_labels - 2, n_labels});
332 333 334 335 336 337 338 339 340 341 342
    framework::Tensor last_ids = int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor last_ids_tmp =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor batch_offset =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor gather_idx =
        int_tensor_buffer.GetBufferBlock({batch_size});
    std::vector<const framework::Tensor*> shape{&rest_trans, &stop_trans,
                                                &start_trans};
    std::vector<framework::Tensor*> outputs{&rest_trans, &stop_trans,
                                            &start_trans};
J
Jack Zhou 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356
    math::SplitFunctor<DeviceContext, T> split_functor;
    split_functor(dev_ctx, trans_exp, shape, 1, &outputs);
    stop_trans.Resize({1, n_labels});
    start_trans.Resize({1, n_labels});
    auto logit0 = input_exp.Slice(0, 1);
    logit0.Resize({batch_size, n_labels});
    BinaryOperation<DeviceContext, AddFunctor, T> AddFloat;
    BinaryOperation<DeviceContext, AddFunctor, int64_t> AddInt;
    BinaryOperation<DeviceContext, MulFunctor, T> MulFloat;
    BinaryOperation<DeviceContext, MulFunctor, int64_t> MulInt;
    BinaryOperation<DeviceContext, SubFunctor, T> SubFloat;
    BinaryOperation<DeviceContext, SubFunctor, int64_t> SubInt;
    if (include_bos_eos_tag) {
      AddFloat(dev_ctx, logit0, start_trans, &alpha);
F
From00 已提交
357 358
      GetMask<DeviceContext, phi::funcs::EqualFunctor, T>()(ctx, left_length,
                                                            one, &float_mask);
J
Jack Zhou 已提交
359 360 361 362 363 364 365 366
      MulFloat(dev_ctx, stop_trans, float_mask, &alpha_nxt);
      AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
    } else {
      alpha = logit0;
    }
    SubInt(dev_ctx, left_length, one, &left_length);
    Argmax<DeviceContext, T, int64_t> argmax;
    for (int64_t i = 1; i < max_seq_len; ++i) {
367
      framework::Tensor logit = input_exp.Slice(i, i + 1);
J
Jack Zhou 已提交
368
      logit.Resize({batch_size, n_labels});
369
      framework::Tensor& alpha_exp = alpha.Resize({batch_size, n_labels, 1});
J
Jack Zhou 已提交
370 371 372 373 374 375 376 377 378
      AddFloat(dev_ctx, alpha_exp, trans_exp, &alpha_trn_sum);
      auto alpha_argmax_temp = alpha_argmax_unbind[i - 1];
      alpha_argmax_temp.Resize({batch_size, n_labels});
      argmax(ctx, alpha_trn_sum, &alpha_argmax_temp, &alpha_max, 1);
      historys.emplace_back(alpha_argmax_temp);
      AddFloat(dev_ctx, alpha_max, logit, &alpha_nxt);
      alpha.Resize({batch_size, n_labels});
      // mask = paddle.cast((left_length > 0), dtype='float32')
      // alpha = mask * alpha_nxt + (1 - mask) * alpha
F
From00 已提交
379 380
      GetMask<DeviceContext, phi::funcs::GreaterThanFunctor, T>()(
          ctx, left_length, zero, &float_mask);
J
Jack Zhou 已提交
381 382 383 384 385 386 387 388 389
      // alpha_nxt = mask * alpha_nxt
      MulFloat(dev_ctx, alpha_nxt, float_mask, &alpha_nxt);
      // inv_mask = 1 - mask
      SubFloat(dev_ctx, float_one, float_mask, &float_mask);
      // alpha = (1 - mask) * alpha
      MulFloat(dev_ctx, alpha, float_mask, &alpha);
      // alpha += alpha_nxt
      AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
      if (include_bos_eos_tag) {
F
From00 已提交
390 391
        GetMask<DeviceContext, phi::funcs::EqualFunctor, T>()(ctx, left_length,
                                                              one, &float_mask);
J
Jack Zhou 已提交
392 393 394 395 396 397 398 399
        // alpha += mask * trans_exp[:, self.stop_idx]
        MulFloat(dev_ctx, stop_trans, float_mask, &alpha_nxt);
        AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
      }
      SubInt(dev_ctx, left_length, one, &left_length);
    }
    argmax(ctx, alpha, &last_ids, scores, 1);
    left_length.Resize({batch_size});
F
From00 已提交
400 401
    GetMask<DeviceContext, phi::funcs::GreaterEqualFunctor, int64_t>()(
        ctx, left_length, zero, &int_mask);
J
Jack Zhou 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415
    // last_ids_update = last_ids * tag_mask
    int last_ids_index = 1;
    int actual_len = (std::min)(seq_len, static_cast<int>(max_seq_len));
    MulInt(dev_ctx, last_ids, int_mask,
           &batch_path[actual_len - last_ids_index]);
    // The algorithm below can refer to
    // https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/layers/crf.py#L438
    ARange<DeviceContext> arange;
    arange(dev_ctx, batch_offset.data<int64_t>(), batch_size, n_labels);
    Gather<DeviceContext, int64_t, int64_t> gather;
    for (auto hist = historys.rbegin(); hist != historys.rend(); ++hist) {
      ++last_ids_index;
      AddInt(dev_ctx, left_length, one, &left_length);
      AddInt(dev_ctx, batch_offset, last_ids, &gather_idx);
416 417
      framework::Tensor& last_ids_update =
          batch_path[actual_len - last_ids_index];
J
Jack Zhou 已提交
418 419
      hist->Resize({batch_size * n_labels});
      gather(dev_ctx, *hist, gather_idx, &last_ids_update);
F
From00 已提交
420 421
      GetMask<DeviceContext, phi::funcs::GreaterThanFunctor, int64_t>()(
          ctx, left_length, zero, &int_mask);
J
Jack Zhou 已提交
422
      MulInt(dev_ctx, last_ids_update, int_mask, &last_ids_update);
F
From00 已提交
423 424
      GetMask<DeviceContext, phi::funcs::EqualFunctor, int64_t>()(
          ctx, left_length, zero, &zero_len_mask);
J
Jack Zhou 已提交
425 426 427 428
      MulInt(dev_ctx, last_ids, zero_len_mask, &last_ids_tmp);
      SubInt(dev_ctx, one, zero_len_mask, &zero_len_mask);
      MulInt(dev_ctx, last_ids_update, zero_len_mask, &last_ids_update);
      AddInt(dev_ctx, last_ids_update, last_ids_tmp, &last_ids_update);
F
From00 已提交
429 430
      GetMask<DeviceContext, phi::funcs::LessThanFunctor, int64_t>()(
          ctx, left_length, zero, &int_mask);
J
Jack Zhou 已提交
431 432 433 434 435 436 437 438
      MulInt(dev_ctx, last_ids, int_mask, &last_ids);
      AddInt(dev_ctx, last_ids_update, last_ids, &last_ids);
    }
    TransCompute<DeviceContext, int64_t>(2, dev_ctx, tpath, path, {1, 0});
  }
};
}  // namespace operators
}  // namespace paddle