matrix_rank_op.cc 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matrix_rank_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/svd_helper.h"
F
From00 已提交
20
#include "paddle/phi/kernels/funcs/compare_functors.h"
21 22 23 24 25 26 27 28 29 30

#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {
using DDim = framework::DDim;

namespace detail {
31
static DDim CheckAndGetOutputDim(const DDim& dim_x) {
32
  auto x_vec = phi::vectorize(dim_x);
33
  if (x_vec.size() == 2) {
34
    return phi::make_ddim({1});
35 36
  }
  x_vec.erase(x_vec.end() - 2, x_vec.end());
37
  return phi::make_ddim(x_vec);
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
}
}  // namespace detail

class MatrixRankeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "MatrixRank");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "MatrixRank");
    auto dim_x = ctx->GetInputDim("X");
    PADDLE_ENFORCE_GE(dim_x.size(), 2,
                      platform::errors::InvalidArgument(
                          "The dims of input must be greater than 2"));

    bool hermitian = ctx->Attrs().Get<bool>("hermitian");
    if (hermitian) {
      int rows = dim_x[dim_x.size() - 2];
      int cols = dim_x[dim_x.size() - 1];
      PADDLE_ENFORCE_EQ(rows, cols,
                        platform::errors::InvalidArgument(
                            "if hermitian == true, matrix should be n*n"));
    }

62 63
    DDim dim_x_batch = detail::CheckAndGetOutputDim(dim_x);
    if (ctx->HasInput("TolTensor")) {
64 65 66 67 68 69 70 71 72 73 74 75
      auto dim_tol = ctx->GetInputDim("TolTensor");
      if (dim_x_batch == dim_tol) {
        ctx->SetOutputDim("Out", dim_x_batch);
      } else {
        int max_dim = std::max(dim_x_batch.size(), dim_tol.size());
        int axis = std::abs(dim_x_batch.size() - dim_tol.size());
        std::vector<int> x_batch_dims_array(max_dim);
        std::vector<int> tol_dims_array(max_dim);
        std::vector<int> out_dims_array(max_dim);
        GetBroadcastDimsArrays(dim_x_batch, dim_tol, x_batch_dims_array.data(),
                               tol_dims_array.data(), out_dims_array.data(),
                               max_dim, axis);
76
        ctx->SetOutputDim("Out", phi::make_ddim(out_dims_array));
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
      }
    } else {
      ctx->SetOutputDim("Out", dim_x_batch);
    }
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
  }
};

class MatrixRankeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor), The input tensor of matrix_rank op.");
98 99 100
    AddInput("TolTensor",
             "(optional) Tol tensor, shape is same as X batch or can broadcast "
             "with X batch.")
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        .AsDispensable();
    AddOutput("Out", "(Tensor), The output tensor of matrix_rank op.");
    AddAttr<float>("tol", "(float, optional). tol").SetDefault(0.0f);
    AddAttr<bool>("use_default_tol",
                  "represent whether user input TolTensor/tol, if input "
                  "TolTensor/tol use_default_tol=true, otherwise "
                  "use_default_tol=false")
        .SetDefault(true);
    AddAttr<bool>("hermitian", "(bool, optional). whether is hermitian matrix")
        .SetDefault(false);
    AddComment(R"DOC(MatrixRank Operator.
    This operator is used to perform MatrixRank operation for batched matrics.
    $$out = matrix_rank(X, tol, hermitian)$$
    )DOC");
  }
};

template <typename T>
void BatchEigenvalues(const T* x_data, T* eigenvalues_data, int batches,
                      int rows, int cols, int k) {
  // Eigen::Matrix API need non-const pointer.
  T* input = const_cast<T*>(x_data);
  int stride = rows * cols;
  for (int i = 0; i < batches; i++) {
    auto m = Eigen::Map<
        Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
        input + i * stride, rows, rows);
    Eigen::SelfAdjointEigenSolver<
        Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
        eigen_solver(m);
    auto eigenvalues = eigen_solver.eigenvalues().cwiseAbs();
    for (int j = 0; j < k; j++) {
      *(eigenvalues_data + i * k + j) = eigenvalues[j];
    }
  }
}

template <typename T>
void BatchSVD(const T* x_data, T* eigenvalues_data, int batches, int rows,
              int cols, int k) {
  // Eigen::Matrix API need non-const pointer.
  T* input = const_cast<T*>(x_data);
  int stride = rows * cols;
  Eigen::BDCSVD<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
      svd;
  for (int i = 0; i < batches; i++) {
    auto m = Eigen::Map<
        Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
        input + i * stride, rows, cols);
    svd.compute(m);
    auto res_s = svd.singularValues();
    for (int j = 0; j < k; j++) {
      eigenvalues_data[i * k + j] = res_s[j];
    }
  }
}

template <typename T>
class MatrixRankCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* x = context.Input<Tensor>("X");
    auto* x_data = x->data<T>();
    auto* out = context.Output<Tensor>("Out");
    out->mutable_data<int64_t>(context.GetPlace());
    bool hermitian = context.Attr<bool>("hermitian");

    auto dim_x = x->dims();
    auto dim_out = out->dims();
    int rows = dim_x[dim_x.size() - 2];
    int cols = dim_x[dim_x.size() - 1];
    int k = std::min(rows, cols);
    auto numel = x->numel();
    int batches = numel / (rows * cols);

    bool use_default_tol = context.Attr<bool>("use_default_tol");
    const Tensor* atol_tensor = nullptr;
    Tensor temp_tensor;
    T rtol_T = 0;
    if (use_default_tol) {
      framework::TensorFromVector<T>(std::vector<T>{0},
                                     context.device_context(), &temp_tensor);
      atol_tensor = &temp_tensor;
      rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols);
    } else if (context.HasInput("TolTensor")) {
      atol_tensor = context.Input<Tensor>("TolTensor");
    } else {
      framework::TensorFromVector<T>(std::vector<T>{context.Attr<float>("tol")},
                                     context.device_context(), &temp_tensor);
      atol_tensor = &temp_tensor;
    }

    Tensor eigenvalue_tensor;
    auto* eigenvalue_data = eigenvalue_tensor.mutable_data<T>(
        detail::GetEigenvalueDim(dim_x, k), context.GetPlace());
    if (hermitian) {
      BatchEigenvalues<T>(x_data, eigenvalue_data, batches, rows, cols, k);
    } else {
      BatchSVD<T>(x_data, eigenvalue_data, batches, rows, cols, k);
    }

    auto dito_T =
        math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext, T>(
            context);
206
    std::vector<int> max_eigenvalue_shape =
207
        phi::vectorize<int>(detail::RemoveLastDim(eigenvalue_tensor.dims()));
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    Tensor max_eigenvalue_tensor =
        dito_T.ReduceMax(eigenvalue_tensor, max_eigenvalue_shape);

    Tensor temp_rtol_tensor;
    framework::TensorFromVector<T>(std::vector<T>{rtol_T}, &temp_rtol_tensor);
    Tensor rtol_tensor = dito_T.Mul(temp_rtol_tensor, max_eigenvalue_tensor);
    Tensor tol_tensor;
    tol_tensor.mutable_data<T>(dim_out, context.GetPlace());
    ElementwiseComputeEx<GreaterElementFunctor<T>, platform::CPUDeviceContext,
                         T, T>(context, atol_tensor, &rtol_tensor, -1,
                               GreaterElementFunctor<T>(), &tol_tensor);

    tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1));

    Tensor compare_result;
Z
Zhang Ting 已提交
223 224
    compare_result.mutable_data<int64_t>(detail::NewAxisDim(dim_out, k),
                                         context.GetPlace());
225 226 227

    int axis = -1;
    if (eigenvalue_tensor.dims().size() >= tol_tensor.dims().size()) {
F
From00 已提交
228
      ElementwiseComputeEx<phi::funcs::GreaterThanFunctor<T, int64_t>,
Z
Zhang Ting 已提交
229 230
                           platform::CPUDeviceContext, T, int>(
          context, &eigenvalue_tensor, &tol_tensor, axis,
F
From00 已提交
231
          phi::funcs::GreaterThanFunctor<T, int64_t>(), &compare_result);
232
    } else {
F
From00 已提交
233
      ElementwiseComputeEx<phi::funcs::LessThanFunctor<T, int64_t>,
Z
Zhang Ting 已提交
234 235
                           platform::CPUDeviceContext, T, int>(
          context, &eigenvalue_tensor, &tol_tensor, axis,
F
From00 已提交
236
          phi::funcs::LessThanFunctor<T, int64_t>(), &compare_result);
237 238 239 240
    }
    auto dito_int =
        math::DeviceIndependenceTensorOperations<platform::CPUDeviceContext,
                                                 int64_t>(context);
241
    std::vector<int> result_shape = phi::vectorize<int>(dim_out);
242 243 244 245 246 247 248 249 250 251 252 253 254 255
    Tensor result = dito_int.ReduceSum(compare_result, result_shape);
    out->ShareDataWith(result);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(matrix_rank, ops::MatrixRankeOp, ops::MatrixRankeOpMaker);

REGISTER_OP_CPU_KERNEL(matrix_rank, ops::MatrixRankCPUKernel<float>,
                       ops::MatrixRankCPUKernel<double>);