adam_op.h 19.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <unordered_map>
S
sneaxiy 已提交
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
21
#include "paddle/fluid/framework/threadpool.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
26 27 28 29

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
30 31
namespace scatter = paddle::operators::math::scatter;

Y
Yibing Liu 已提交
32 33 34 35 36 37 38 39 40
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

41 42 43 44 45 46
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
47
template <typename T>
48
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
62
  T* param_out_;
Y
Yang Yu 已提交
63 64 65

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
66 67
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
68 69 70 71 72 73 74 75 76 77 78
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
79 80
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
81

Y
Yang Yu 已提交
82
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
83 84 85 86 87 88 89
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
90
    T p = param_[i];
Y
Yang Yu 已提交
91 92

    // Calculation
Y
Yang Yu 已提交
93
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
94

Y
Yang Yu 已提交
95 96
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
97
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
98 99 100 101

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
102
    param_out_[i] = p;
Y
Yang Yu 已提交
103 104 105
  }
};

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

171 172 173
template <typename T, typename Flavour>
struct SparseAdamFunctor;

T
wip  
typhoonzero 已提交
174
template <typename T>
M
minqiyang 已提交
175
struct SparseAdamFunctor<T, GPUAdam> {
T
wip  
typhoonzero 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
193
  int64_t row_count_;
Q
Qiao Longfei 已提交
194
  bool lazy_mode_;
T
wip  
typhoonzero 已提交
195 196 197 198 199

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
Q
Qiao Longfei 已提交
200
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
T
wip  
typhoonzero 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
215
        row_numel_(row_numel),
Q
Qiao Longfei 已提交
216
        row_count_(row_count),
Q
Qiao Longfei 已提交
217
        lazy_mode_(lazy_mode) {}
S
sneaxiy 已提交
218

Q
Qiao Longfei 已提交
219
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
S
sneaxiy 已提交
220 221 222 223
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
224 225
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
239
  }
Q
Qiao Longfei 已提交
240 241 242 243

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
Q
Qiao Longfei 已提交
244 245 246
    if (lazy_mode_ && row_idx < 0) {
      return;
    } else {
Q
Qiao Longfei 已提交
247 248 249
      T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
      adam_update(i, g);
    }
Q
Qiao Longfei 已提交
250
  }
T
wip  
typhoonzero 已提交
251 252
};

M
minqiyang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
template <typename T>
struct SparseAdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
278
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
M
minqiyang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
  }

M
minqiyang 已提交
318 319 320 321 322 323
  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
S
sneaxiy 已提交
324
    int64_t row_count = static_cast<int64_t>(numel / row_numel_);
M
minqiyang 已提交
325

S
sneaxiy 已提交
326
    for (int64_t i = 0, j = 0; i != row_count; ++i) {
M
minqiyang 已提交
327
      if (i == *(rows_ + j)) {
S
sneaxiy 已提交
328
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
329
          T g = grad_[j * row_numel_ + k];
M
minqiyang 已提交
330
          adam_update(i * row_numel_ + k, g);
M
Fix bug  
minqiyang 已提交
331
        }
M
minqiyang 已提交
332 333
        ++j;
      } else {
S
sneaxiy 已提交
334
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
348 349 350 351 352
      }
    }
  }
};

Q
QI JUN 已提交
353
template <typename DeviceContext, typename T>
354 355 356
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
357 358 359 360
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
S
sneaxiy 已提交
361 362
                   ctx.Inputs("Param").front(),
                   framework::ToTypeName(param_var->Type()));
C
chengduo 已提交
363

Y
Yang Yu 已提交
364 365
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
366

367 368
    int64_t min_row_size_to_use_multithread =
        ctx.Attr<int64_t>("min_row_size_to_use_multithread");
Q
Qiao Longfei 已提交
369
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
370 371 372
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
373
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
374 375
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
393 394
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
423 424 425
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
426
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
427
        VLOG(3) << "grad row size is 0!!";
428 429
        return;
      }
S
sneaxiy 已提交
430 431 432 433 434 435 436 437 438 439

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

S
sneaxiy 已提交
440
      framework::SelectedRows tmp_grad_merge;
S
sneaxiy 已提交
441 442 443 444 445 446 447 448
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(ctx.template device_context<DeviceContext>(), grad,
S
sneaxiy 已提交
449 450
                   &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
S
sneaxiy 已提交
451 452 453
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
454
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
455
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
456
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
T
wip  
typhoonzero 已提交
457
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
458

M
minqiyang 已提交
459 460
      if (platform::is_cpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, CPUAdam> functor(
Q
Qiao Longfei 已提交
461 462 463 464 465 466 467 468
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode);
469 470 471 472 473 474 475 476 477 478
        if (lazy_mode) {
          VLOG(3) << "run cpu lazy mode";
          size_t row_count = grad_merge.rows().size();
          std::vector<int64_t> cpu_rows(grad_merge.rows());
          for (size_t row_index = 0; row_index < row_count; ++row_index) {
            for (size_t offset = 0; offset < row_numel; ++offset) {
              size_t i = cpu_rows[row_index] * row_numel + offset;
              functor.adam_update(i, grad_data[row_index * row_numel + offset]);
            }
          }
479 480
        }
#ifndef _WIN32
S
sneaxiy 已提交
481
        else if (FLAGS_inner_op_parallelism > 1 &&  // NOLINT
482 483
                 min_row_size_to_use_multithread > 0 &&
                 param.dims()[0] > min_row_size_to_use_multithread) {
484 485
          VLOG(3) << "use multi thread, inner_op_parallelism="
                  << FLAGS_inner_op_parallelism
486
                  << " min_row_size_to_use_multithread="
487
                  << min_row_size_to_use_multithread;
Q
Qiao Longfei 已提交
488
          if (FLAGS_inner_op_parallelism > 10) {
489 490
            VLOG(1) << "FLAGS_inner_op_parallelism "
                    << FLAGS_inner_op_parallelism << " is two large!";
Q
Qiao Longfei 已提交
491
          }
492 493 494
          auto& grad_rows = grad_merge.rows();
          std::unordered_map<size_t, int> row_id_to_grad_row_offset;
          size_t param_row_count = param.numel() / row_numel;
Q
Qiao Longfei 已提交
495
          if (param_row_count < 1000) {
496 497 498
            VLOG(1) << "param_row_count should be larger then 1000 to use "
                       "multi thread, currently "
                    << param_row_count;
Q
Qiao Longfei 已提交
499
          }
500 501
          for (size_t i = 0; i < grad_rows.size(); ++i) {
            row_id_to_grad_row_offset[grad_rows[i]] = i;
Q
Qiao Longfei 已提交
502
          }
503
          std::vector<std::future<void>> fs;
Q
Qiao Longfei 已提交
504
          int64_t line_in_each_thread =
Q
Qiao Longfei 已提交
505
              param_row_count / FLAGS_inner_op_parallelism + 1;
506 507 508
          for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
            int64_t start = i * line_in_each_thread;
            int64_t end = (i + 1) * line_in_each_thread;
S
sneaxiy 已提交
509
            if (start >= static_cast<int64_t>(param_row_count)) {
Q
Qiao Longfei 已提交
510 511
              break;
            }
S
sneaxiy 已提交
512 513
            if (end > static_cast<int64_t>(param_row_count)) {
              end = static_cast<int64_t>(param_row_count);
Q
Qiao Longfei 已提交
514
            }
Q
Qiao Longfei 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
            fs.push_back(
                framework::Async([&functor, &row_id_to_grad_row_offset,
                                  &grad_data, row_numel, start, end]() {
                  for (int64_t row_id = start; row_id < end; ++row_id) {
                    auto iter = row_id_to_grad_row_offset.find(row_id);
                    if (iter != row_id_to_grad_row_offset.end()) {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(
                            row_id * row_numel + row_offset,
                            grad_data[iter->second * row_numel + row_offset]);
                      }
                    } else {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(row_id * row_numel + row_offset, 0);
                      }
                    }
Q
Qiao Longfei 已提交
533 534
                  }
                }));
Q
Qiao Longfei 已提交
535
          }
536
          for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
537
        }
S
sneaxiy 已提交
538 539
#endif          // !_WIN32
        else {  // NOLINT
540
          functor(param.numel());
Q
Qiao Longfei 已提交
541
        }
M
minqiyang 已提交
542 543 544 545 546 547 548 549 550
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
551
            grad_merge.rows().size(), lazy_mode);
M
minqiyang 已提交
552 553

        // FIXME(minqiyang): remove BinarySearch in GPU later
Q
Qiao Longfei 已提交
554 555 556 557 558
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
559 560 561
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
562 563 564 565 566
  }
};

}  // namespace operators
}  // namespace paddle