layer_norm_op.cc 11.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/layer_norm_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenMatrixMapRowMajor = Eigen::Map<
    Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
template <typename T>
using ConstEigenMatrixMapRowMajor = Eigen::Map<
    const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "");
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Bias"), "");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "");

C
chengduoZH 已提交
41 42 43 44 45 46 47
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
    PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
                      "'begin_norm_axis' must be less than the rank of X");

    auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
48
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
49

C
chengduoZH 已提交
50
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
C
chengduoZH 已提交
51
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
C
chengduoZH 已提交
52
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
C
chengduoZH 已提交
53
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
C
chengduoZH 已提交
54

C
chengduoZH 已提交
55
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
56 57
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
58 59 60 61 62 63 64 65 66 67 68

    ctx->ShareLoD("X", "Y");
  }
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X", "The input tensor");
    AddInput("Scale",
C
chengduoZH 已提交
69
             "Scale is a 1-dimensional tensor of size H "
C
chengduoZH 已提交
70 71
             "that is applied to the output");
    AddInput("Bias",
C
chengduoZH 已提交
72
             "Bias is a 1-dimensional tensor of size H "
C
chengduoZH 已提交
73 74 75 76 77 78 79 80 81 82 83
             "that is applied to the output");
    AddOutput("Y", "result after normalization");
    AddOutput("Mean", "Mean of the current mini batch.");
    AddOutput("Variance", "Variance of the current mini batch.");

    AddAttr<float>("epsilon", "")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
                         "'epsilon' should be between 0.0 and 0.001.");
        });
C
chengduoZH 已提交
84 85 86 87 88 89 90 91
    AddAttr<int>("begin_norm_axis",
                 "(int default:1), the "
                 "axis of `begin_norm_axis ... Rank(X) - 1` will be normalized")
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
          PADDLE_ENFORCE_GT(begin_norm_axis, 0,
                            "'begin_norm_axis' should be greater than zero.");
        });
C
chengduoZH 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    AddComment(R"DOC(
Layer Normalization.

Layer Norm has been implemented as discussed in the paper:
https://arxiv.org/abs/1607.06450
...
)DOC");
  }
};

template <typename T>
class LayerNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
C
chengduoZH 已提交
113
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
C
chengduoZH 已提交
114 115 116 117 118 119 120 121

    auto *output = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    output->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

C
chengduoZH 已提交
122 123 124
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
125

C
chengduoZH 已提交
126
    auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
C
chengduoZH 已提交
127 128
    auto scale_map = ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
    auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), 1, right);
C
chengduoZH 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142
    auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
    auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);

    auto squre = [](T ele) { return ele * ele; };
    auto add_epslion = [epsilon](T ele) { return ele + epsilon; };

    mean_map = input_map.rowwise().mean();
    var_map = (input_map - mean_map.replicate(1, right))
                  .unaryExpr(squre)
                  .rowwise()
                  .mean()
                  .unaryExpr(add_epslion);

C
chengduoZH 已提交
143 144
    auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };

C
chengduoZH 已提交
145 146
    // TODO(zcd): Some thinking about output_map, is it appropriate that
    // `output_map` and `input_map` point to the same memory.
C
chengduoZH 已提交
147
    auto inv_std = var_map.unaryExpr(inv_std_func);
C
chengduoZH 已提交
148
    output_map = (input_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
149 150
                     .cwiseProduct(inv_std.replicate(1, right))
                     .cwiseProduct(scale_map.replicate(left, 1)) +
C
chengduoZH 已提交
151
                 bias_map.replicate(left, 1);
C
chengduoZH 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Scale"), "");
    PADDLE_ENFORCE(ctx->HasInput("Mean"), "");
    PADDLE_ENFORCE(ctx->HasInput("Variance"), "");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
169
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
170 171
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
172 173
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
174 175
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
176 177
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    return framework::OpKernelType(framework::ToDataType(t->type()),
                                   ctx.GetPlace());
  }
};

template <typename T>
class LayerNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *var = ctx.Input<Tensor>("Variance");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    const auto &x_dims = x->dims();

C
chengduoZH 已提交
215 216
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
C
chengduoZH 已提交
217 218
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
219 220 221 222 223 224

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

C
chengduoZH 已提交
225
    auto scale_map = ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
C
chengduoZH 已提交
226 227 228 229 230 231 232
    auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
    auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
    auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
    auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
233
      auto d_bias_map = EigenMatrixMapRowMajor<T>(d_bias->data<T>(), 1, right);
C
chengduoZH 已提交
234
      d_bias_map = d_y_map.colwise().sum();
C
chengduoZH 已提交
235 236 237
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
238 239
      auto d_scale_map =
          EigenMatrixMapRowMajor<T>(d_scale->data<T>(), 1, right);
C
chengduoZH 已提交
240
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
241 242
      // There are two equation to compute d_scale. One uses "Y" and the other
      // does not use "Y"
C
chengduoZH 已提交
243
      d_scale_map =
C
chengduoZH 已提交
244
          ((x_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
245 246
               .cwiseProduct(
                   var_map.unaryExpr(inv_std_func).replicate(1, right))
C
chengduoZH 已提交
247
               .cwiseProduct(d_y_map))
C
chengduoZH 已提交
248
              .colwise()
C
chengduoZH 已提交
249
              .sum();
C
chengduoZH 已提交
250 251 252 253 254
    }

    if (d_x) {
      d_x->mutable_data<T>(ctx.GetPlace());
      auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
C
chengduoZH 已提交
255 256
      auto triple_product_func = [](T ele) { return ele * ele * ele; };
      auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
C
chengduoZH 已提交
257
      // dy_dx
C
chengduoZH 已提交
258
      auto dx_end = var_map.unaryExpr(inv_std_func)
C
chengduoZH 已提交
259
                        .replicate(1, right)
C
chengduoZH 已提交
260 261
                        .cwiseProduct(d_y_map)
                        .cwiseProduct(scale_map.replicate(left, 1));
C
chengduoZH 已提交
262
      // dy_dmean_dx
C
chengduoZH 已提交
263
      auto dx_mean = (T(-1.0) / right) *
C
chengduoZH 已提交
264
                     var_map.unaryExpr(inv_std_func)
C
chengduoZH 已提交
265 266
                         .replicate(1, right)
                         .cwiseProduct(d_y_map)
C
chengduoZH 已提交
267
                         .cwiseProduct(scale_map.replicate(left, 1))
C
chengduoZH 已提交
268 269 270
                         .rowwise()
                         .sum()
                         .replicate(1, right);
C
chengduoZH 已提交
271
      // dy_var_dx
C
chengduoZH 已提交
272
      auto dvar_end_part = (x_map - mean_map.replicate(1, right))
C
chengduoZH 已提交
273
                               .cwiseProduct(scale_map.replicate(left, 1))
C
chengduoZH 已提交
274 275 276 277 278 279
                               .cwiseProduct(d_y_map)
                               .rowwise()
                               .sum();
      auto dvar_end = var_map.unaryExpr(inv_std_func)
                          .unaryExpr(triple_product_func)
                          .cwiseProduct(dvar_end_part)
C
chengduoZH 已提交
280
                          .replicate(1, right);
C
chengduoZH 已提交
281 282 283
      auto dx_var =
          (T(-1.0) / right) *
          (x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);
C
chengduoZH 已提交
284

C
chengduoZH 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
      d_x_map = dx_end + dx_mean + dx_var;
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
            layer_norm_grad, ops::LayerNormGradOp);
REGISTER_OP_CPU_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>);