svd_kernel.cc 4.5 KB
Newer Older
X
xiongkun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/svd_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"

namespace phi {

template <typename T>
void LapackSvd(
    const T* X, T* U, T* VH, T* S, int rows, int cols, int full = false) {
  char jobz = full ? 'A' : 'S';
  int mx = std::max(rows, cols);
  int mn = std::min(rows, cols);
  T* a = const_cast<T*>(X);
  int lda = rows;
  int ldu = rows;
  int ldvt = full ? cols : mn;
  int lwork = full ? (4 * mn * mn + 6 * mn + mx) : (4 * mn * mn + 7 * mn);
  std::vector<T> work(lwork);
  std::vector<int> iwork(8 * mn);
  int info;
  phi::funcs::lapackSvd<T>(jobz,
                           rows,
                           cols,
                           a,
                           lda,
                           S,
                           U,
                           ldu,
                           VH,
                           ldvt,
                           work.data(),
                           lwork,
                           iwork.data(),
                           &info);
  if (info < 0) {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "This %s-th argument has an illegal value", info));
  }
  if (info > 0) {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "DBDSDC/SBDSDC did not converge, updating process failed. May be you "
        "passes a invalid matrix."));
  }
}

template <typename T>
void BatchSvd(const T* X,
              T* U,
              T* VH,
              T* S,
              int rows,
              int cols,
              int batches,
              int full = false) {
  // NOTE: this function is row major, because this function called the lapack.
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
    LapackSvd<T>(X + i * stride,
                 U + i * stride_u,
                 VH + i * stride_v,
                 S + i * k,
                 rows,
                 cols,
                 full);
  }
  return;
}

template <typename T, typename Context>
void SvdKernel(const Context& dev_ctx,
               const DenseTensor& X,
               bool full_matrices,
               DenseTensor* U,
               DenseTensor* S,
               DenseTensor* VH) {
  int full = full_matrices;
  /*Create Tensors and output, set the dim ...*/
  auto numel = X.numel();
  DenseTensor trans_x = ::phi::TransposeLast2Dim<T>(dev_ctx, X);
  auto* x_data = trans_x.data<T>();
  auto x_dims = X.dims();
  int rows = x_dims[x_dims.size() - 2];
  int cols = x_dims[x_dims.size() - 1];
  // int k = std::min(rows, cols);
  // int col_u = full ? rows : k;
  // int col_v = full ? cols : k;
  int batches = numel / (rows * cols);
  auto* U_out = dev_ctx.template Alloc<phi::dtype::Real<T>>(U);
  auto* VH_out = dev_ctx.template Alloc<phi::dtype::Real<T>>(VH);
  auto* S_out = dev_ctx.template Alloc<phi::dtype::Real<T>>(S);
  /*SVD Use the Eigen Library*/
  BatchSvd<T>(x_data, U_out, VH_out, S_out, rows, cols, batches, full);
  /* let C[m, n] as a col major matrix with m rows and n cols.
   * let R[m, n] is row major matrix with m rows and n cols.
   * then we have: R[m,n] = C[m, n].resize((n,m)).tranpose_last_two()
   * */
  auto col_major_to_row_major = [&dev_ctx](DenseTensor* out) {
    auto origin_dim = out->dims();
    int64_t& x = origin_dim[origin_dim.size() - 1];
    int64_t& y = origin_dim[origin_dim.size() - 2];
    std::swap(x, y);
    out->Resize(origin_dim);
    return ::phi::TransposeLast2Dim<T>(dev_ctx, *out);
  };
  *U = col_major_to_row_major(U);
  *VH = col_major_to_row_major(VH);
}

}  // namespace phi

PD_REGISTER_KERNEL(svd, CPU, ALL_LAYOUT, phi::SvdKernel, float, double) {}