viterbi_decode_op.h 18.6 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/controlflow/compare_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_functor.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/operators/unique_op.h"
23
#include "paddle/phi/kernels/funcs/gather.h"
J
Jack Zhou 已提交
24 25 26 27 28 29 30 31 32
#ifdef PADDLE_WITH_MKLML
#include <omp.h>
#endif

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T, typename IndType>
struct Argmax {
33 34 35
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out_idx,
                  framework::Tensor* out, int axis) {
J
Jack Zhou 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    framework::DDim input_dims = input.dims();
    int64_t pre = 1;
    int64_t post = 1;
    int64_t n = input_dims[axis];
    for (int i = 0; i < axis; i++) {
      pre *= input_dims[i];
    }
    for (int i = axis + 1; i < input_dims.size(); i++) {
      post *= input_dims[i];
    }
    int64_t height = pre * post;
    int64_t width = n;
    const T* in_data = input.data<T>();
    IndType* out_idx_data = out_idx->data<IndType>();
    T* out_data = out->data<T>();
// Reduce
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
    for (int64_t i = 0; i < height; ++i) {
      int64_t h = i / post;
      int64_t w = i % post;
      IndType max_idx = -1;
      T max_value = (std::numeric_limits<T>::lowest)();  // for windows compile
      for (int64_t j = 0; j < width; ++j) {
        if (in_data[h * width * post + j * post + w] > max_value) {
          max_value = in_data[h * width * post + j * post + w];
          max_idx = j;
        }
      }
      out_data[i] = max_value;
      out_idx_data[i] = max_idx;
    }
  }
};

template <typename DeviceContext>
struct ARange {
  void operator()(const DeviceContext& dev_ctx, int64_t* data, int end,
                  int64_t scale) {
    for (int i = 0; i < end; ++i) {
      data[i] = i * scale;
    }
  }
};

template <typename DeviceContext, typename T>
struct GetMaxValue {
84
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& input,
J
Jack Zhou 已提交
85 86 87 88 89 90 91 92 93
                  T* max_value) {
    auto input_ptr = input.data<T>();
    auto num = input.numel();
    *max_value = *std::max_element(input_ptr, input_ptr + num);
  }
};

template <typename DeviceContext, typename T, typename IndexT = int>
struct Gather {
94 95 96
  void operator()(const DeviceContext& ctx, const framework::Tensor& src,
                  const framework::Tensor& index, framework::Tensor* output) {
    phi::funcs::CPUGather<T, IndexT>(ctx, src, index, output);
J
Jack Zhou 已提交
97 98 99 100
  }
};

template <typename T, typename Functor, typename OutT = T>
101 102
void SameDimsBinaryOP(const framework::Tensor& lhs,
                      const framework::Tensor& rhs, framework::Tensor* out) {
J
Jack Zhou 已提交
103 104 105 106 107 108 109 110 111 112 113 114
  const T* lhs_ptr = lhs.data<T>();
  const T* rhs_ptr = rhs.data<T>();
  OutT* out_ptr = out->data<OutT>();
  Functor functor;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int i = 0; i < out->numel(); ++i) {
    out_ptr[i] = functor(lhs_ptr[i], rhs_ptr[i]);
  }
}

Z
Zhang Ting 已提交
115 116
template <typename DeviceContext,
          template <typename InT, typename OutT> typename CompareFunctor,
J
Jack Zhou 已提交
117 118
          typename T>
struct GetMask {
119 120 121
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& lhs, const framework::Tensor& rhs,
                  framework::Tensor* mask) {
Z
Zhang Ting 已提交
122
    SameDimsBinaryOP<int64_t, CompareFunctor<int64_t, T>, T>(lhs, rhs, mask);
J
Jack Zhou 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }
};

template <bool is_multi_threads>
struct GetInputIndex {
  void operator()(const std::vector<int>& lhs_dims,
                  const std::vector<int>& rhs_dims,
                  const std::vector<int>& output_dims,
                  const std::vector<int>& lhs_strides,
                  const std::vector<int>& rhs_strides,
                  const std::vector<int>& output_strides, int output_idx,
                  int* index_array, int* lhs_idx, int* rhs_idx) {
    int out_dims_size = output_strides.size();
    for (int j = 0; j < out_dims_size; ++j) {
      int curr_idx = output_idx / output_strides[j];
      output_idx %= output_strides[j];
      *lhs_idx += (lhs_dims[j] > 1) ? curr_idx * lhs_strides[j] : 0;
      *rhs_idx += (rhs_dims[j] > 1) ? curr_idx * rhs_strides[j] : 0;
    }
  }
};

template <>
struct GetInputIndex<false> {
  void operator()(const std::vector<int>& lhs_dims,
                  const std::vector<int>& rhs_dims,
                  const std::vector<int>& output_dims,
                  const std::vector<int>& lhs_strides,
                  const std::vector<int>& rhs_strides,
                  const std::vector<int>& output_strides, int output_idx,
                  int* index_array, int* lhs_idx, int* rhs_idx) {
    int out_dims_size = output_strides.size();
155 156 157 158 159 160
    *lhs_idx = phi::funcs::GetElementwiseIndex(lhs_dims.data(), out_dims_size,
                                               index_array);
    *rhs_idx = phi::funcs::GetElementwiseIndex(rhs_dims.data(), out_dims_size,
                                               index_array);
    phi::funcs::UpdateElementwiseIndexArray(output_dims.data(), out_dims_size,
                                            index_array);
J
Jack Zhou 已提交
161 162 163 164
  }
};

template <typename T, typename Functor, bool is_multi_threads = false>
165 166 167
void SimpleBroadcastBinaryOP(const framework::Tensor& lhs,
                             const framework::Tensor& rhs,
                             framework::Tensor* out) {
J
Jack Zhou 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  const T* lhs_ptr = lhs.data<T>();
  const T* rhs_ptr = rhs.data<T>();
  T* out_ptr = out->data<T>();
  int out_size = static_cast<int>(out->dims().size());
  std::vector<int> out_dims(out_size);
  std::vector<int> lhs_dims(out_size);
  std::vector<int> rhs_dims(out_size);
  std::copy(lhs.dims().Get(), lhs.dims().Get() + out_size, lhs_dims.data());
  std::copy(rhs.dims().Get(), rhs.dims().Get() + out_size, rhs_dims.data());
  std::copy(out->dims().Get(), out->dims().Get() + out_size, out_dims.data());
  std::vector<int> output_strides(out_size, 1);
  std::vector<int> lhs_strides(out_size, 1);
  std::vector<int> rhs_strides(out_size, 1);
  std::vector<int> index_array(out_size, 0);
  // calculate strides
  for (int i = out_size - 2; i >= 0; --i) {
    output_strides[i] = output_strides[i + 1] * out_dims[i + 1];
    lhs_strides[i] = lhs_strides[i + 1] * lhs_dims[i + 1];
    rhs_strides[i] = rhs_strides[i + 1] * rhs_dims[i + 1];
  }
  Functor functor;
  GetInputIndex<is_multi_threads> get_input_index;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int i = 0; i < out->numel(); ++i) {
    int lhs_idx = 0;
    int rhs_idx = 0;
    get_input_index(lhs_dims, rhs_dims, out_dims, lhs_strides, rhs_strides,
                    output_strides, i, index_array.data(), &lhs_idx, &rhs_idx);
    out_ptr[i] = functor(lhs_ptr[lhs_idx], rhs_ptr[rhs_idx]);
  }
}

template <typename DeviceContext, template <typename T> typename BinaryFunctor,
          typename T>
struct BinaryOperation {
205 206
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& lhs,
                  const framework::Tensor& rhs, framework::Tensor* output) {
J
Jack Zhou 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    if (lhs.dims() == rhs.dims()) {
      SameDimsBinaryOP<T, BinaryFunctor<T>>(lhs, rhs, output);
    } else {
      bool is_multi_threads = false;
#ifdef PADDLE_WITH_MKLML
      if (omp_get_max_threads() > 1) {
        is_multi_threads = true;
      }
#endif
      if (is_multi_threads) {
        SimpleBroadcastBinaryOP<T, BinaryFunctor<T>, true>(lhs, rhs, output);
      } else {
        SimpleBroadcastBinaryOP<T, BinaryFunctor<T>, false>(lhs, rhs, output);
      }
    }
  }
};

class TensorBuffer {
 public:
227 228
  explicit TensorBuffer(const framework::LoDTensor& in)
      : buffer_(in), offset_(0) {
J
Jack Zhou 已提交
229 230
    buffer_.Resize({buffer_.numel()});
  }
231
  framework::Tensor GetBufferBlock(std::initializer_list<int64_t> shape) {
J
Jack Zhou 已提交
232 233
    int64_t size = std::accumulate(shape.begin(), shape.end(), 1,
                                   std::multiplies<int64_t>());
234
    framework::Tensor block = buffer_.Slice(offset_, offset_ + size);
J
Jack Zhou 已提交
235 236 237 238 239 240
    offset_ += size;
    block.Resize(shape);
    return block;
  }

 private:
241
  framework::LoDTensor buffer_;  // need to resize 1-D Tensor
J
Jack Zhou 已提交
242 243 244 245 246 247 248 249 250 251
  int offset_;
};

template <typename DeviceContext, typename T>
class ViterbiDecodeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool include_bos_eos_tag = ctx.Attr<bool>("include_bos_eos_tag");
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto curr_place = ctx.GetPlace();
252
    auto* input = ctx.Input<framework::Tensor>("Input");
J
Jack Zhou 已提交
253 254 255
    auto batch_size = static_cast<int>(input->dims()[0]);
    auto seq_len = static_cast<int>(input->dims()[1]);
    auto n_labels = static_cast<int>(input->dims()[2]);
256 257
    phi::funcs::SetConstant<DeviceContext, T> float_functor;
    phi::funcs::SetConstant<DeviceContext, int64_t> int_functor;
258
    std::vector<framework::Tensor> historys;
J
Jack Zhou 已提交
259 260 261
    // We create tensor buffer in order to avoid allocating memory frequently
    // 10 means allocate 10*batch_size bytes memory, such as int_mask, zero...
    int buffer_size = batch_size * (n_labels + 1) * seq_len + 10 * batch_size;
262
    framework::LoDTensor int_buffer;
263
    int_buffer.Resize(phi::make_ddim({buffer_size}));
J
Jack Zhou 已提交
264 265 266 267 268 269
    int_buffer.mutable_data<int64_t>(ctx.GetPlace());
    TensorBuffer int_tensor_buffer(int_buffer);
    // create float tensor buffer
    // 10 means allocate 10*batch_size*n_labels bytes, such as alpha, alpha_max
    buffer_size = batch_size * (seq_len + 10) * n_labels +
                  (batch_size + 2) * n_labels * n_labels;
270
    framework::LoDTensor float_buffer;
271
    float_buffer.Resize(phi::make_ddim({buffer_size}));
J
Jack Zhou 已提交
272 273
    float_buffer.mutable_data<T>(ctx.GetPlace());
    TensorBuffer float_tensor_buffer(float_buffer);
274 275 276
    auto* length = ctx.Input<framework::Tensor>("Length");
    framework::Tensor left_length =
        int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
277 278 279 280 281
    framework::TensorCopy(*length, curr_place, dev_ctx, &left_length);
    int64_t max_seq_len = 0;
    GetMaxValue<DeviceContext, int64_t> get_max_value;
    get_max_value(dev_ctx, left_length, &max_seq_len);

282
    auto* scores = ctx.Output<framework::Tensor>("Scores");
J
Jack Zhou 已提交
283
    scores->mutable_data<T>(curr_place);
284
    auto* path = ctx.Output<framework::Tensor>("Path");
J
Jack Zhou 已提交
285 286
    path->Resize({batch_size, max_seq_len});
    path->mutable_data<int64_t>(curr_place);
287 288
    framework::Tensor tpath =
        int_tensor_buffer.GetBufferBlock({max_seq_len, batch_size});
J
Jack Zhou 已提交
289 290 291 292 293
    auto batch_path = Unbind(tpath);
    for (auto it = batch_path.begin(); it != batch_path.end(); ++it) {
      it->Resize({batch_size});
    }
    // create and init required tensor
294
    framework::Tensor input_exp =
J
Jack Zhou 已提交
295 296
        float_tensor_buffer.GetBufferBlock({seq_len, batch_size, n_labels});
    TransCompute<DeviceContext, T>(3, dev_ctx, *input, &input_exp, {1, 0, 2});
297 298 299
    auto* transition = ctx.Input<framework::Tensor>("Transition");
    framework::Tensor trans_exp =
        float_tensor_buffer.GetBufferBlock({n_labels, n_labels});
J
Jack Zhou 已提交
300 301
    framework::TensorCopy(*transition, curr_place, dev_ctx, &trans_exp);
    trans_exp.Resize({1, n_labels, n_labels});
302 303 304
    framework::Tensor alpha =
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
    framework::Tensor zero = int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
305
    int_functor(dev_ctx, &zero, 0);
306
    framework::Tensor one = int_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
307
    int_functor(dev_ctx, &one, 1);
308 309
    framework::Tensor float_one =
        float_tensor_buffer.GetBufferBlock({batch_size, 1});
J
Jack Zhou 已提交
310
    float_functor(dev_ctx, &float_one, static_cast<T>(1.0));
311
    framework::Tensor alpha_trn_sum =
J
Jack Zhou 已提交
312
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels, n_labels});
313
    framework::Tensor alpha_max =
J
Jack Zhou 已提交
314
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
315
    framework::Tensor alpha_argmax =
J
Jack Zhou 已提交
316 317
        int_tensor_buffer.GetBufferBlock({seq_len, batch_size, n_labels});
    auto alpha_argmax_unbind = Unbind(alpha_argmax);
318
    framework::Tensor alpha_nxt =
J
Jack Zhou 已提交
319
        float_tensor_buffer.GetBufferBlock({batch_size, n_labels});
320 321 322 323 324 325 326 327 328 329
    framework::Tensor int_mask = int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor zero_len_mask =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor float_mask =
        float_tensor_buffer.GetBufferBlock({batch_size, 1});
    framework::Tensor stop_trans =
        float_tensor_buffer.GetBufferBlock({1, 1, n_labels});
    framework::Tensor start_trans =
        float_tensor_buffer.GetBufferBlock({1, 1, n_labels});
    framework::Tensor rest_trans =
J
Jack Zhou 已提交
330
        float_tensor_buffer.GetBufferBlock({1, n_labels - 2, n_labels});
331 332 333 334 335 336 337 338 339 340 341
    framework::Tensor last_ids = int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor last_ids_tmp =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor batch_offset =
        int_tensor_buffer.GetBufferBlock({batch_size});
    framework::Tensor gather_idx =
        int_tensor_buffer.GetBufferBlock({batch_size});
    std::vector<const framework::Tensor*> shape{&rest_trans, &stop_trans,
                                                &start_trans};
    std::vector<framework::Tensor*> outputs{&rest_trans, &stop_trans,
                                            &start_trans};
J
Jack Zhou 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    math::SplitFunctor<DeviceContext, T> split_functor;
    split_functor(dev_ctx, trans_exp, shape, 1, &outputs);
    stop_trans.Resize({1, n_labels});
    start_trans.Resize({1, n_labels});
    auto logit0 = input_exp.Slice(0, 1);
    logit0.Resize({batch_size, n_labels});
    BinaryOperation<DeviceContext, AddFunctor, T> AddFloat;
    BinaryOperation<DeviceContext, AddFunctor, int64_t> AddInt;
    BinaryOperation<DeviceContext, MulFunctor, T> MulFloat;
    BinaryOperation<DeviceContext, MulFunctor, int64_t> MulInt;
    BinaryOperation<DeviceContext, SubFunctor, T> SubFloat;
    BinaryOperation<DeviceContext, SubFunctor, int64_t> SubInt;
    if (include_bos_eos_tag) {
      AddFloat(dev_ctx, logit0, start_trans, &alpha);
      GetMask<DeviceContext, EqualFunctor, T>()(ctx, left_length, one,
                                                &float_mask);
      MulFloat(dev_ctx, stop_trans, float_mask, &alpha_nxt);
      AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
    } else {
      alpha = logit0;
    }
    SubInt(dev_ctx, left_length, one, &left_length);
    Argmax<DeviceContext, T, int64_t> argmax;
    for (int64_t i = 1; i < max_seq_len; ++i) {
366
      framework::Tensor logit = input_exp.Slice(i, i + 1);
J
Jack Zhou 已提交
367
      logit.Resize({batch_size, n_labels});
368
      framework::Tensor& alpha_exp = alpha.Resize({batch_size, n_labels, 1});
J
Jack Zhou 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
      AddFloat(dev_ctx, alpha_exp, trans_exp, &alpha_trn_sum);
      auto alpha_argmax_temp = alpha_argmax_unbind[i - 1];
      alpha_argmax_temp.Resize({batch_size, n_labels});
      argmax(ctx, alpha_trn_sum, &alpha_argmax_temp, &alpha_max, 1);
      historys.emplace_back(alpha_argmax_temp);
      AddFloat(dev_ctx, alpha_max, logit, &alpha_nxt);
      alpha.Resize({batch_size, n_labels});
      // mask = paddle.cast((left_length > 0), dtype='float32')
      // alpha = mask * alpha_nxt + (1 - mask) * alpha
      GetMask<DeviceContext, GreaterThanFunctor, T>()(ctx, left_length, zero,
                                                      &float_mask);
      // alpha_nxt = mask * alpha_nxt
      MulFloat(dev_ctx, alpha_nxt, float_mask, &alpha_nxt);
      // inv_mask = 1 - mask
      SubFloat(dev_ctx, float_one, float_mask, &float_mask);
      // alpha = (1 - mask) * alpha
      MulFloat(dev_ctx, alpha, float_mask, &alpha);
      // alpha += alpha_nxt
      AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
      if (include_bos_eos_tag) {
        GetMask<DeviceContext, EqualFunctor, T>()(ctx, left_length, one,
                                                  &float_mask);
        // alpha += mask * trans_exp[:, self.stop_idx]
        MulFloat(dev_ctx, stop_trans, float_mask, &alpha_nxt);
        AddFloat(dev_ctx, alpha, alpha_nxt, &alpha);
      }
      SubInt(dev_ctx, left_length, one, &left_length);
    }
    argmax(ctx, alpha, &last_ids, scores, 1);
    left_length.Resize({batch_size});
    GetMask<DeviceContext, GreaterEqualFunctor, int64_t>()(ctx, left_length,
                                                           zero, &int_mask);
    // last_ids_update = last_ids * tag_mask
    int last_ids_index = 1;
    int actual_len = (std::min)(seq_len, static_cast<int>(max_seq_len));
    MulInt(dev_ctx, last_ids, int_mask,
           &batch_path[actual_len - last_ids_index]);
    // The algorithm below can refer to
    // https://github.com/PaddlePaddle/PaddleNLP/blob/develop/paddlenlp/layers/crf.py#L438
    ARange<DeviceContext> arange;
    arange(dev_ctx, batch_offset.data<int64_t>(), batch_size, n_labels);
    Gather<DeviceContext, int64_t, int64_t> gather;
    for (auto hist = historys.rbegin(); hist != historys.rend(); ++hist) {
      ++last_ids_index;
      AddInt(dev_ctx, left_length, one, &left_length);
      AddInt(dev_ctx, batch_offset, last_ids, &gather_idx);
415 416
      framework::Tensor& last_ids_update =
          batch_path[actual_len - last_ids_index];
J
Jack Zhou 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
      hist->Resize({batch_size * n_labels});
      gather(dev_ctx, *hist, gather_idx, &last_ids_update);
      GetMask<DeviceContext, GreaterThanFunctor, int64_t>()(ctx, left_length,
                                                            zero, &int_mask);
      MulInt(dev_ctx, last_ids_update, int_mask, &last_ids_update);
      GetMask<DeviceContext, EqualFunctor, int64_t>()(ctx, left_length, zero,
                                                      &zero_len_mask);
      MulInt(dev_ctx, last_ids, zero_len_mask, &last_ids_tmp);
      SubInt(dev_ctx, one, zero_len_mask, &zero_len_mask);
      MulInt(dev_ctx, last_ids_update, zero_len_mask, &last_ids_update);
      AddInt(dev_ctx, last_ids_update, last_ids_tmp, &last_ids_update);
      GetMask<DeviceContext, LessThanFunctor, int64_t>()(ctx, left_length, zero,
                                                         &int_mask);
      MulInt(dev_ctx, last_ids, int_mask, &last_ids);
      AddInt(dev_ctx, last_ids_update, last_ids, &last_ids);
    }
    TransCompute<DeviceContext, int64_t>(2, dev_ctx, tpath, path, {1, 0});
  }
};
}  // namespace operators
}  // namespace paddle