convert_to_mixed_precision.cc 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"

#include <unordered_set>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/tensor_meta.h"

using namespace paddle::framework;  // NOLINT

namespace paddle {
namespace inference {
namespace analysis {

namespace {

bool IsKernelSupportPrecision(
    const std::string& op_type,
    phi::Backend backend,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  auto kernels = phi::KernelFactory::Instance().kernels();
  if (kernels.find(op_type) == kernels.end()) {
    return false;
  }
  phi::KernelKey kernel_key(backend, layout, data_type);
  return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key);
}

bool GpuKernelSupportPrecision(
    const std::string& op_type,
    phi::DataType data_type,
    phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) {
  bool res =
      IsKernelSupportPrecision(op_type, phi::Backend::GPU, data_type, layout);
  res |= IsKernelSupportPrecision(
      op_type, phi::Backend::GPUDNN, data_type, layout);
  return res;
}

// Just process special cases.
bool OutShouldNotConvert(ir::Node* var_node) {
  auto op_node = var_node->inputs[0];
  auto* op_desc = op_node->Op();

  // batch_norm's input and output (variance and mean) are the same.
  if (op_desc->Type() == "batch_norm") {
    auto vecs = op_desc->Output("MeanOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("VarianceOut");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedMean");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
    vecs = op_desc->Output("SavedVariance");
    if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
      return true;
    }
  }

  return false;
}

// Just process special cases for weights conversion.
bool WeightsShouldNotConvert(ir::Node* var_node) {
  auto op_nodes = var_node->outputs;
  for (auto* op_node : op_nodes) {
    auto* op_desc = op_node->Op();
    // batch_norm op's bias, mean, scale and variance just be float32, so we can
    // not convert the dtype.
    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Mean");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Scale");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
      vecs = op_desc->Input("Variance");
      if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
        return true;
      }
    }
  }

  return false;
}

void ConvertTensorDtype(framework::ir::Graph* graph,
                        const std::unordered_set<std::string>& blacklist,
                        bool keep_io_types,
                        phi::Backend backend,
                        phi::DataType tensor_dtype) {
  framework::proto::VarType::Type to_type;
  if (tensor_dtype == phi::DataType::FLOAT16) {
    to_type = framework::proto::VarType::FP16;
  } else if (tensor_dtype == phi::DataType::BFLOAT16) {
    to_type = framework::proto::VarType::BF16;
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "mixed_precision currently not supported dtype %d, we now only support "
        "fp16 and bf16.",
        static_cast<int>(tensor_dtype)));
  }

  int num_low_precision = 0;
  int suffix = 0;
  framework::BlockDesc* block_desc{nullptr};
  std::vector<framework::ir::Node*> output_nodes;
  std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map;

  for (auto* op_node : framework::ir::TopologySortOperations(*graph)) {
    if (!op_node->IsOp()) continue;
    auto op_type = op_node->Op()->Type();
    auto phi_op_type = phi::TransToPhiKernelName(op_type);
    // LOG(INFO) << "process op " << op_type << ", corresponding phi type is "
    // << phi_op_type;
    // 1. set input dtype.
    if (op_type == "feed") {
      block_desc = op_node->Op()->Block();
      auto feed_var = op_node->outputs[0]->Var();
      if (!keep_io_types &&
          feed_var->GetDataType() == framework::proto::VarType::FP32) {
        feed_var->SetDataType(to_type);
      }
    } else if (op_type == "fetch") {
      auto* fetch_var = op_node->inputs[0];
      output_nodes.push_back(fetch_var);
      continue;
    }

    // 2. if op support fp16/bf16 and not in blacklist.
    //      - cast weight to fp16/bf16.
    //      - add cast op if the input dtype is not fp16/bf16.
    //      - set output dtype.
    else if (blacklist.count(phi_op_type) == 0) {  // NOLINT
      bool support_precision =
          OpSupportPrecision(phi_op_type, backend, tensor_dtype, blacklist);
      VLOG(2) << "phi_op_type " << phi_op_type << " support low precision "
              << support_precision;
      if (support_precision) {
        ++num_low_precision;
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
          auto* in_var = in_node->Var();
          if (in_var->Persistable() &&
              in_var->GetDataType() == framework::proto::VarType::FP32) {
            if (WeightsShouldNotConvert(in_node)) continue;
            in_var->SetDataType(to_type);
          } else if (!in_var->Persistable() &&
                     in_var->GetDataType() != to_type) {
            AddCastOp(graph,
                      in_node,
                      op_node,
                      in_var->GetDataType(),
                      to_type,
                      &suffix,
                      block_desc,
                      &cast_map);
          }
        }
        for (auto* out_node : op_node->outputs) {
          auto* out_var = out_node->Var();
          if (out_var->GetDataType() == framework::proto::VarType::FP32) {
            if (OutShouldNotConvert(out_node)) continue;
            out_var->SetDataType(to_type);
          }
        }
      } else {
        auto inputs = op_node->inputs;
        for (auto* in_node : inputs) {
          auto* in_var = in_node->Var();
          if (!in_var->Persistable() &&
              in_var->GetDataType() != framework::proto::VarType::FP32) {
            AddCastOp(graph,
                      in_node,
                      op_node,
                      in_var->GetDataType(),
                      framework::proto::VarType::FP32,
                      &suffix,
                      block_desc,
                      &cast_map);
          }
        }
      }
    }

    // 3. check op not support fp16/bf16 or in blacklist.
    //      - add cast op if the input dtype is not fp32.
    else {  // NOLINT
      // trt pass should explicitle add cast op is input is bf16/tf32, etc.
      if (op_node->Name() == "tensorrt_engine") continue;
      for (auto* in_node : op_node->inputs) {
        auto* in_var = in_node->Var();
        if (in_var->GetDataType() == to_type) {
          AddCastOp(graph,
                    in_node,
                    op_node,
                    to_type,
                    framework::proto::VarType::FP32,
                    &suffix,
                    block_desc,
                    &cast_map);
        }
      }
    }
  }

  // 4. if output_op's dtype is not compatible to output dtype, then just insert
  // cast.
  for (auto* node : output_nodes) {
    auto var = node->Var();
    if (keep_io_types && var->GetDataType() == to_type) {
      // fp16/bf16 -> fp32.
      AddCastOp(graph,
                node,
                node->outputs[0],
                to_type,
                framework::proto::VarType::FP32,
                &suffix,
                block_desc,
                &cast_map);
    } else if (!keep_io_types &&
               var->GetDataType() == framework::proto::VarType::FP32) {
      // fp32 -> fp16/bf16
      AddCastOp(graph,
                node,
                node->outputs[0],
                framework::proto::VarType::FP32,
                to_type,
                &suffix,
                block_desc,
                &cast_map);
    }
  }

  if (num_low_precision)
    LOG(INFO) << "---  detected " << num_low_precision << " low precision ops";
}
}  // namespace

bool OpSupportPrecision(const std::string& phi_op_type,
                        phi::Backend backend,
                        phi::DataType precision,
                        const std::unordered_set<std::string>& blacklist) {
  bool support_precision = false;
  if (blacklist.count(phi_op_type) == 0) {
    if (backend == phi::Backend::GPU)
      support_precision = GpuKernelSupportPrecision(phi_op_type, precision);
    else
      support_precision =
          IsKernelSupportPrecision(phi_op_type, backend, precision);
  }
  return support_precision;
}

void AddCastOp(
    framework::ir::Graph* graph,
    framework::ir::Node* node,
    framework::ir::Node* next_op,
    framework::proto::VarType::Type from_type,
    framework::proto::VarType::Type to_type,
    int* suffix,
    framework::BlockDesc* block_desc,
    std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) {
  auto update_cast_desc = [&](framework::OpDesc& desc,
                              const std::string& x_name,
                              const std::string& out_name,
                              const int in_dtype,
                              const int out_dtype) {
    desc.SetType("cast");
    desc.SetInput("X", {x_name});
    desc.SetOutput("Out", {out_name});
    desc.SetAttr("in_dtype", in_dtype);
    desc.SetAttr("out_dtype", out_dtype);
    desc.SetAttr("use_mkldnn", false);
    desc.SetAttr("with_quant_attr", false);
    desc.Flush();
  };

  if (map->count(node) == 0) {
    // insert cast op before node.
    std::string cast_input_name = node->Var()->Name();
    std::string cast_output_name =
        node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++);
    CHECK_NOTNULL(block_desc);
    framework::OpDesc cast_op_desc(block_desc);
    update_cast_desc(cast_op_desc,
                     cast_input_name,
                     cast_output_name,
                     static_cast<int>(from_type),
                     static_cast<int>(to_type));
    auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
    auto* cast_output_vardesc = block_desc->Var(cast_output_name);
    cast_output_vardesc->SetPersistable(false);
    cast_output_vardesc->SetDataType(to_type);
    cast_output_vardesc->SetShape(node->Var()->GetShape());
    auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
    IR_NODE_LINK_TO(cast_op_node, cast_output_node);
    (*map)[node] = cast_output_node;
  }
  next_op->Op()->RenameInput(node->Name(), map->at(node)->Name());
  IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
  IR_NODE_LINK_TO(map->at(node), next_op);
}

void ConvertToMixedPrecision(const std::string& model_file,
                             const std::string& params_file,
                             const std::string& mixed_model_file,
                             const std::string& mixed_params_file,
                             phi::DataType mixed_precision,
                             phi::Backend backend,
                             bool keep_io_types,
                             std::unordered_set<std::string> black_list) {
  paddle::CPUPlace place;
  framework::Executor executor(place);
  framework::Scope scope;
  auto program_desc =
      inference::Load(&executor, &scope, model_file, params_file);
  auto graph = std::unique_ptr<framework::ir::Graph>(
      new framework::ir::Graph(*program_desc));

  ConvertTensorDtype(
      graph.get(), black_list, keep_io_types, backend, mixed_precision);

  framework::ProgramDesc mixed_program_desc;
  framework::ir::GraphToProgram(*graph, &mixed_program_desc);

  auto parameters = scope.LocalVarNames();
  std::sort(parameters.begin(), parameters.end());

  auto serialize_params =
      [](framework::Scope* scope,
         const std::vector<std::string>& params) -> std::string {
    std::ostringstream os;
    platform::CPUDeviceContext ctx;
    for (const auto& param : params) {
      VLOG(3) << "Serialize param: " << param;
      PADDLE_ENFORCE_NOT_NULL(
          scope->FindVar(param),
          platform::errors::NotFound(
              "Block should already have a '%s' variable", param));
      auto* tensor = scope->FindVar(param)->GetMutable<framework::LoDTensor>();
      framework::SerializeToStream(os, *tensor, ctx);
    }
    return os.str();
  };

  std::unordered_set<std::string> weights_should_be_fp32;
  for (auto* node : paddle::framework::ir::TopologySortOperations(*graph)) {
    if (!node->IsOp()) continue;
    auto* op_desc = node->Op();
    if (op_desc->Type() == "feed" || op_desc->Type() == "fetch") continue;

    if (op_desc->Type() == "batch_norm") {
      auto vecs = op_desc->Input("Bias");
      for (auto s : vecs) {
        weights_should_be_fp32.insert(s);
      }
      vecs = op_desc->Input("Mean");
      for (auto s : vecs) {
        weights_should_be_fp32.insert(s);
      }
      vecs = op_desc->Input("Scale");
      for (auto s : vecs) {
        weights_should_be_fp32.insert(s);
      }
      vecs = op_desc->Input("Variance");
      for (auto s : vecs) {
        weights_should_be_fp32.insert(s);
      }
    }
  }

  for (const auto& param_name : parameters) {
    auto* var = scope.FindLocalVar(param_name);
    if (var->IsType<framework::LoDTensor>() ||
        var->IsType<framework::Tensor>()) {
      auto* t = var->GetMutable<framework::LoDTensor>();
      framework::Tensor mixed_tensor;
      mixed_tensor.Resize(t->dims());
      auto* data = t->mutable_data<float>(platform::CPUPlace());

      if (mixed_precision == phi::DataType::FLOAT16 &&
          !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::FLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<float16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<float16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      } else if (mixed_precision == phi::DataType::BFLOAT16 &&
                 !weights_should_be_fp32.count(param_name)) {
        mixed_tensor.set_type(paddle::experimental::DataType::BFLOAT16);
        auto* mixed_data =
            mixed_tensor.mutable_data<bfloat16>(platform::CPUPlace());
        for (int i = 0; i < t->numel(); i++) {
          mixed_data[i] = static_cast<bfloat16>(data[i]);
        }
        t->clear();
        paddle::framework::TensorCopySync(mixed_tensor, place, t);
      }
    }
  }

  auto StrToBinary = [](const std::string& path, const std::string& str) {
    std::ofstream file(path.c_str(), std::ios::binary);
    file.write(str.c_str(), str.size());
    file.close();
  };
  StrToBinary(mixed_model_file,
              mixed_program_desc.Proto()->SerializeAsString());
  StrToBinary(mixed_params_file, serialize_params(&scope, parameters));
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle