op_test.py 20.0 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
import random
18
import itertools
Q
Qiao Longfei 已提交
19
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
20
import collections
F
fengjiayi 已提交
21
from paddle.v2.fluid.backward import append_backward
Q
Qiao Longfei 已提交
22 23 24
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
25 26


27 28 29 30 31 32 33 34 35
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
36
def create_op(scope, op_type, inputs, outputs, attrs):
37 38
    kwargs = dict()

Y
Yu Yang 已提交
39
    def __create_var__(name, var_name):
Q
QI JUN 已提交
40
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
41 42
        kwargs[name].append(var_name)

Q
qijun 已提交
43
    for in_name, in_dup in Operator.get_op_inputs(op_type):
44 45 46 47
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
48 49
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
Y
Yu Yang 已提交
50
                    __create_var__(in_name, sub_in_name)
51
            else:
Y
Yu Yang 已提交
52
                __create_var__(in_name, in_name)
53

Q
qijun 已提交
54
    for out_name, out_dup in Operator.get_op_outputs(op_type):
55 56 57
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
58
                sub_out = outputs[out_name]
59 60
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
Y
Yu Yang 已提交
61
                    __create_var__(out_name, sub_out_name)
62
            else:
Y
Yu Yang 已提交
63
                __create_var__(out_name, out_name)
64

Q
qijun 已提交
65
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
66 67
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
68

69 70 71 72
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
73
    def __set_input__(var_name, var):
74 75 76 77 78 79 80 81 82 83 84
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
85

Q
qijun 已提交
86
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
87 88 89
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
90 91
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
Y
Yu Yang 已提交
92
                    __set_input__(sub_in_name, sub_in_val)
93
            else:
Y
Yu Yang 已提交
94
                __set_input__(in_name, inputs[in_name])
95 96


97 98
def get_numeric_gradient(place,
                         scope,
99 100 101
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
102
                         output_names,
103 104
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
105
    # FIXME: change this method by compile time concepts
106
    set_input(scope, op, inputs, place)
107 108 109 110 111

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
112
        sum = []
Y
Yancey 已提交
113
        for output_name in output_names:
114
            op.run(scope, place)
Y
Yu Yang 已提交
115 116 117
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
118 119 120

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

144 145 146 147
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
148
            set_input(scope, op, inputs, place)
149 150

        # get one input element throw it's index i.
151
        origin = __get_elem__(tensor_to_check, i)
152 153
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
154
        __set_elem__(tensor_to_check, i, x_pos)
155 156 157
        y_pos = get_output()

        if in_place:
158
            set_input(scope, op, inputs, place)
159 160

        x_neg = origin - delta
161
        __set_elem__(tensor_to_check, i, x_neg)
162 163
        y_neg = get_output()

164
        __set_elem__(tensor_to_check, i, origin)
165 166 167 168 169
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
197
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


212
class OpTest(unittest.TestCase):
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
228 229 230 231 232 233
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
234 235 236 237 238
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
239 240 241 242 243 244 245 246 247 248 249 250
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

251
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
252 253 254 255 256 257 258 259 260 261 262 263
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
264 265 266
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
280 281 282 283
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
284 285

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
286 287 288
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
289 290 291 292 293 294 295 296 297 298
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

299 300
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
301 302 303
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
304 305
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
Y
Yang Yang(Tony) 已提交
306
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
307 308
                    actual = outs[idx]
                    actual_t = np.array(actual)
309 310
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
311 312
                    self.assertTrue(
                        np.allclose(
313
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
314 315
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
316 317
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
318 319
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
320
            else:
Y
Yang Yang(Tony) 已提交
321
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
322 323
                actual = outs[idx]
                actual_t = np.array(actual)
324
                expect = self.outputs[out_name]
325
                expect_t = expect[0] if isinstance(expect, tuple) else expect
326 327
                self.assertTrue(
                    np.allclose(
328
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
329
                    "Output (" + out_name + ") has diff at " + str(place))
330
                if isinstance(expect, tuple):
Q
QI JUN 已提交
331
                    self.assertListEqual(actual.lod(), expect[1],
332 333
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
334

335
    def check_output(self, atol=1e-5):
Q
qijun 已提交
336
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
337
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
338
            places.append(core.CUDAPlace(0))
Q
qijun 已提交
339
        for place in places:
340
            self.check_output_with_place(place, atol)
Q
qijun 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
354
                return ("%s Variable %s max gradient diff %f over limit %f, "
355
                        "the first error element is %d, %f, %f") % (
356
                            msg_prefix, name, max_diff, max_relative_error,
357
                            offset, a.flatten()[offset], b.flatten()[offset])
358 359 360 361 362

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
363
                   output_names,
364
                   no_grad_set=None,
365
                   numeric_grad_delta=0.005,
366
                   in_place=False,
Q
Qiao Longfei 已提交
367 368
                   max_relative_error=0.005,
                   user_defined_grads=None):
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        places = [core.CPUPlace()]
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
                                       user_defined_grads)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None):
387
        self.scope = core.Scope()
Q
qijun 已提交
388
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
389
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
390
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
391
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
392
                            op_attrs)
Y
Yu Yang 已提交
393

394 395 396
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
397 398 399
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
400
        numeric_grads = user_defined_grads or [
401
            get_numeric_gradient(
402
                place,
403 404 405 406
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
407
                output_names,
408
                delta=numeric_grad_delta,
409 410
                in_place=in_place) for input_to_check in inputs_to_check
        ]
411 412 413 414 415 416
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

        self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                               max_relative_error,
                               "Gradient Check On %s" % str(place))
Q
qijun 已提交
417

Y
Yu Yang 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
432 433 434 435 436
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
477
        op = block.append_op(
Y
Yu Yang 已提交
478 479 480 481 482
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
483 484 485 486
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

Y
Yu Yang 已提交
487 488 489
        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
F
fengjiayi 已提交
490
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
491
            op = block.append_op(
Y
Yu Yang 已提交
492
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
493 494
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
495 496 497
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
498
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
499
                op = block.append_op(
Y
Yu Yang 已提交
500 501 502
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
503 504
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
505 506
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
507
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
508
            op_sum = block.append_op(
Y
Yu Yang 已提交
509
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
510 511
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
512

F
fengjiayi 已提交
513
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
514
            op_loss = block.append_op(
Y
Yu Yang 已提交
515 516 517 518
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
519 520
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
521

F
fengjiayi 已提交
522
        param_grad_list = append_backward(
Y
Yu Yang 已提交
523 524 525 526 527 528 529 530 531
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
532 533 534
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))